References
- Krithiga R, Lakshmi C : A survey: segmentation in dental X-ray images for diagnosis of dental caries. Int J Cont Theory Appl, 9:941-948, 2016.
- Selwitz RH, Ismail AI, Pitts NB : Dental caries. Lancet, 369:51-59, 2007. https://doi.org/10.1016/S0140-6736(07)60031-2
- Tam LE, McComb D : Diagnosis of occlusal caries: Part II. Recent diagnostic technologies. J Can Dent Assoc, 67:459-463, 2001.
- Akkaya N, Kansu O, Kansu H, Cagirankaya LB, Arslan U : Comparing the accuracy of panoramic and intraoral radiography in the diagnosis of proximal caries. Dentomaxillofac Radiol, 35:170-174, 2006. https://doi.org/10.1259/dmfr/26750940
- McKnight-Hanes C, Myers DR, Dushku JC, Thompson WO, Durham LC : Radiographic recommendations for the primary dentition: comparison of general dentists and pediatric dentists. Pediatr Dent, 12:212-216, 1990.
- da Silva Pierro VS, Barcelos R, de Souza IPR, Raymundo R Jr : Pediatric Bitewing Film Holder: Preschoolers' Acceptance and Radiographs' Diagnostic Quality. Pediatr Dent, 30:342-347, 2008.
- Pitts NB : The use of bitewing radiographs in the management of dental caries: scientific and practical considerations. Dentomaxillofac Radio, 25:5-16, 1996. https://doi.org/10.1259/dmfr.25.1.9084279
- Gopal KS, Krishnaraj N, Priya M : Faulty radiographs: A retrospective radiographic analysis. Int J Appl Dent Sci, 4:72-76, 2018.
- Bini SA : Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care? J Arthroplasty, 33:2358-2361, 2018. https://doi.org/10.1016/j.arth.2018.02.067
- Lee S, Oh SI, Jo J, Kang S, Shin Y, Park JW : Deep learning for early dental caries detection in bitewing radiographs. Sci Rep, 11:16807, 2021.
- Karimi D, Salcudean SE : Reducing the hausdorff distance in medical image segmentation with convolutional neural networks. IEEE Trans Med Imaging, 39:499-513, 2020. https://doi.org/10.1109/TMI.2019.2930068
- Redmon J, Divvala S, Girshick R, Farhadi A : You only look once: Unified, real-time object detection. Available from URL: https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf (Accessed on January 10, 2023).
- Yan B, Fan P, Lei X, Liu Z, Yang F : A Real-Time Apple Targets Detection Method for Picking Robot Based on Improved YOLOv5. Remote Sens, 13:1619, 2021.
- Girshick R, Donahue J, Darrell T, Malik J : Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, 580-587, 2014.
- Arya C, Tripathi A, Singh P, Diwakar M, Sharma K, Pandey H : Object detection using deep learning: a review. J Phys Conf Series, 1854:012012, 2021.
- Kim H, Song JS, Shin TJ, Hyun HK, Kim JW, Jang KT, Kim YJ : Detection of Proximal Caries Lesions with Deep Learning Algorithm. J Korean Acad Pediatr Dent, 49:131-139, 2022. https://doi.org/10.5933/JKAPD.2022.49.2.131
- Young DA, Novy BB, Zeller GG, Hale R, Hart TC, Truelove EL; American Dental Association Council on Scientific Affairs : The American Dental Association caries classification system for clinical practice: a report of the American Dental Association Council on Scientific Affairs. J Am Dent Assoc, 146:79-86, 2015. https://doi.org/10.1016/j.adaj.2014.11.018
- Tzutalin D : LabelImg. Available from URL: https://github.com/HumanSignal/labelImg (Accessed on October 15, 2022).
- Shorten C, Khoshgoftaar TM : A survey on image data augmentation for deep learning. J Big Data, 6:60, 2019.
- Rezatofighi H, Tsoi N, Gwak J, Sadeghian A, Reid I, Savarese S : Generalized intersection over union: A metric and a loss for bounding box regression. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 658-666, 2019.
- Ren S, He K, Girshick R, Sun J : Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans Pattern Anal Mach Intell, 39:1137-1149, 2017. https://doi.org/10.1109/TPAMI.2016.2577031
- Park IH, Kim SH : Performance Indicator Survey for Object Detection. Proc. of 20th International Conference on Control, Automation and Systems (ICCAS), 284-288, 2020.
- Padilla R, Netto SL, Da Silva EA : A survey on performance metrics for object-detection algorithms. 2020 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 237-242, 2020.
- Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V : Scikit-learn: Machine learning in Python. J Mach Learn Res, 12:2825-2830, 2011.
- Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J, Layton R, Vanderplas J, Joly A, Holt B, Varoquaux G : API design for machine learning software: experiences from the scikit-learn project. arXiv,1309.0238, 2013.
- Krohling LL, de Paula KMP, Behlau M : ROC curve of the Pediatric Voice Related Quality-of-Life Survey (PVRQOL). Codas, 28:311-313, 2016. https://doi.org/10.1590/2317-1782/20162015103
- Campbell I : Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample recommendations. Stat Med, 26:3661-3675, 2007. https://doi.org/10.1002/sim.2832
- Mo KH, Yoon JH, Kim SG, Lee SH : Detection of proximal caries using laser fluorescence. J Korean Acad Pediatr Dent, 31:323-330, 2004.
- Wilson PR, Beynon AD : Mineralization differences between human deciduous and permanent enamel measured by quantitative microradiography. Arch Oral Biol, 34:85-88, 1989. https://doi.org/10.1016/0003-9969(89)90130-1
- Seol JH, Oh YH, Lee NY, Lee SH : Detection of early proximal caries with laser fluorescence. J Korean Acad Pediatr Dent, 31:236-246, 2004.
- Bayraktar Y, Ayan E : Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs. Clin Oral Investig, 26:623-632, 2022. https://doi.org/10.1007/s00784-021-04040-1
- Srivastava MM, Kumar P, Pradhan L, Varadarajan S : Detection of tooth caries in bitewing radiographs using deep learning. arXiv, 1711.07312, 2017.
- Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, Elhennawy K, Schwendicke F : Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent, 100:103425, 2020.
- Lian L, Zhu T, Zhu F, Zhu H : Deep learning for caries detection and classification. Diagnostics, 11:1672, 2021.
- Allwright S : What is a good F1 score and how do I interpret it? Available from URL: https://stephenallwright.com/good-f1-score (Accessed on November 8, 2022).
- Youssry N, Khattab A : Accurate Real-Time Face Mask Detection Framework Using YOLOv5. 4th IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems, DTS2022, 2022.