• Title/Summary/Keyword: Deep Learning Dataset

Search Result 796, Processing Time 0.03 seconds

Speech Emotion Recognition with SVM, KNN and DSVM

  • Hadhami Aouani ;Yassine Ben Ayed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.40-48
    • /
    • 2023
  • Speech Emotions recognition has become the active research theme in speech processing and in applications based on human-machine interaction. In this work, our system is a two-stage approach, namely feature extraction and classification engine. Firstly, two sets of feature are investigated which are: the first one is extracting only 13 Mel-frequency Cepstral Coefficient (MFCC) from emotional speech samples and the second one is applying features fusions between the three features: Zero Crossing Rate (ZCR), Teager Energy Operator (TEO), and Harmonic to Noise Rate (HNR) and MFCC features. Secondly, we use two types of classification techniques which are: the Support Vector Machines (SVM) and the k-Nearest Neighbor (k-NN) to show the performance between them. Besides that, we investigate the importance of the recent advances in machine learning including the deep kernel learning. A large set of experiments are conducted on Surrey Audio-Visual Expressed Emotion (SAVEE) dataset for seven emotions. The results of our experiments showed given good accuracy compared with the previous studies.

Implementation of a Recommendation system using the advanced deep reinforcement learning method (고급 심층 강화학습 기법을 이용한 추천 시스템 구현)

  • Sony Peng;Sophort Siet;Sadriddinov Ilkhomjon;DaeYoung, Kim;Doo-Soon Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.406-409
    • /
    • 2023
  • With the explosion of information, recommendation algorithms are becoming increasingly important in providing people with appropriate content, enhancing their online experience. In this paper, we propose a recommender system using advanced deep reinforcement learning(DRL) techniques. This method is more adaptive and integrative than traditional methods. We selected the MovieLens dataset and employed the precision metric to assess the effectiveness of our algorithm. The result of our implementation outperforms other baseline techniques, delivering better results for Top-N item recommendations.

Deep Learning based Rapid Diagnosis System for Identifying Tomato Nutrition Disorders

  • Zhang, Li;Jia, Jingdun;Li, Yue;Gao, Wanlin;Wang, Minjuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2012-2027
    • /
    • 2019
  • Nutritional disorders are one of the most common diseases of crops and they often result in significant loss of agricultural output. Moreover, the imbalance of nutrition element not only affects plant phenotype but also threaten to the health of consumers when the concentrations above the certain threshold. A number of disease identification systems have been proposed in recent years. Either the time consuming or accuracy is difficult to meet current production management requirements. Moreover, most of the systems are hard to be extended, only detect a few kinds of common diseases with great difference. In view of the limitation of current approaches, this paper studies the effects of different trace elements on crops and establishes identification system. Specifically, we analysis and acquire eleven types of tomato nutritional disorders images. After that, we explore training and prediction effects and significances of super resolution of identification model. Then, we use pre-trained enhanced deep super-resolution network (EDSR) model to pre-processing dataset. Finally, we design and implement of diagnosis system based on deep learning. And the final results show that the average accuracy is 81.11% and the predicted time less than 0.01 second. Compared to existing methods, our solution achieves a high accuracy with much less consuming time. At the same time, the diagnosis system has good performance in expansibility and portability.

Very deep super-resolution for efficient cone-beam computed tomographic image restoration

  • Hwang, Jae Joon;Jung, Yun-Hoa;Cho, Bong-Hae;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • v.50 no.4
    • /
    • pp.331-337
    • /
    • 2020
  • Purpose: As cone-beam computed tomography (CBCT) has become the most widely used 3-dimensional (3D) imaging modality in the dental field, storage space and costs for large-capacity data have become an important issue. Therefore, if 3D data can be stored at a clinically acceptable compression rate, the burden in terms of storage space and cost can be reduced and data can be managed more efficiently. In this study, a deep learning network for super-resolution was tested to restore compressed virtual CBCT images. Materials and Methods: Virtual CBCT image data were created with a publicly available online dataset (CQ500) of multidetector computed tomography images using CBCT reconstruction software (TIGRE). A very deep super-resolution (VDSR) network was trained to restore high-resolution virtual CBCT images from the low-resolution virtual CBCT images. Results: The images reconstructed by VDSR showed better image quality than bicubic interpolation in restored images at various scale ratios. The highest scale ratio with clinically acceptable reconstruction accuracy using VDSR was 2.1. Conclusion: VDSR showed promising restoration accuracy in this study. In the future, it will be necessary to experiment with new deep learning algorithms and large-scale data for clinical application of this technology.

A Study on Residual U-Net for Semantic Segmentation based on Deep Learning (딥러닝 기반의 Semantic Segmentation을 위한 Residual U-Net에 관한 연구)

  • Shin, Seokyong;Lee, SangHun;Han, HyunHo
    • Journal of Digital Convergence
    • /
    • v.19 no.6
    • /
    • pp.251-258
    • /
    • 2021
  • In this paper, we proposed an encoder-decoder model utilizing residual learning to improve the accuracy of the U-Net-based semantic segmentation method. U-Net is a deep learning-based semantic segmentation method and is mainly used in applications such as autonomous vehicles and medical image analysis. The conventional U-Net occurs loss in feature compression process due to the shallow structure of the encoder. The loss of features causes a lack of context information necessary for classifying objects and has a problem of reducing segmentation accuracy. To improve this, The proposed method efficiently extracted context information through an encoder using residual learning, which is effective in preventing feature loss and gradient vanishing problems in the conventional U-Net. Furthermore, we reduced down-sampling operations in the encoder to reduce the loss of spatial information included in the feature maps. The proposed method showed an improved segmentation result of about 12% compared to the conventional U-Net in the Cityscapes dataset experiment.

Deep Learning based Photo Horizon Correction (딥러닝을 이용한 영상 수평 보정)

  • Hong, Eunbin;Jeon, Junho;Cho, Sunghyun;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.95-103
    • /
    • 2017
  • Horizon correction is a crucial stage for image composition enhancement. In this paper, we propose a deep learning based method for estimating the slanted angle of a photograph and correcting it. To estimate and correct the horizon direction, existing methods use hand-crafted low-level features such as lines, planes, and gradient distributions. However, these methods may not work well on the images that contain no lines or planes. To tackle this limitation and robustly estimate the slanted angle, we propose a convolutional neural network (CNN) based method to estimate the slanted angle by learning more generic features using a huge dataset. In addition, we utilize multiple adaptive spatial pooling layers to extract multi-scale image features for better performance. In the experimental results, we show our CNN-based approach robustly and accurately estimates the slanted angle of an image regardless of the image content, even if the image contains no lines or planes at all.

Attention Gated FC-DenseNet for Extracting Crop Cultivation Area by Multispectral Satellite Imagery (다중분광밴드 위성영상의 작물재배지역 추출을 위한 Attention Gated FC-DenseNet)

  • Seong, Seon-kyeong;Mo, Jun-sang;Na, Sang-il;Choi, Jae-wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1061-1070
    • /
    • 2021
  • In this manuscript, we tried to improve the performance of the FC-DenseNet by applying an attention gate for the classification of cropping areas. The attention gate module could facilitate the learning of a deep learning model and improve the performance of the model by injecting of spatial/spectral weights to each feature map. Crop classification was performed in the onion and garlic regions using a proposed deep learning model in which an attention gate was added to the skip connection part of FC-DenseNet. Training data was produced using various PlanetScope satellite imagery, and preprocessing was applied to minimize the problem of imbalanced training dataset. As a result of the crop classification, it was verified that the proposed deep learning model can more effectively classify the onion and garlic regions than existing FC-DenseNet algorithm.

Automatic Categorization of Islamic Jurisprudential Legal Questions using Hierarchical Deep Learning Text Classifier

  • AlSabban, Wesam H.;Alotaibi, Saud S.;Farag, Abdullah Tarek;Rakha, Omar Essam;Al Sallab, Ahmad A.;Alotaibi, Majid
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.281-291
    • /
    • 2021
  • The Islamic jurisprudential legal system represents an essential component of the Islamic religion, that governs many aspects of Muslims' daily lives. This creates many questions that require interpretations by qualified specialists, or Muftis according to the main sources of legislation in Islam. The Islamic jurisprudence is usually classified into branches, according to which the questions can be categorized and classified. Such categorization has many applications in automated question-answering systems, and in manual systems in routing the questions to a specialized Mufti to answer specific topics. In this work we tackle the problem of automatic categorisation of Islamic jurisprudential legal questions using deep learning techniques. In this paper, we build a hierarchical deep learning model that first extracts the question text features at two levels: word and sentence representation, followed by a text classifier that acts upon the question representation. To evaluate our model, we build and release the largest publicly available dataset of Islamic questions and answers, along with their topics, for 52 topic categories. We evaluate different state-of-the art deep learning models, both for word and sentence embeddings, comparing recurrent and transformer-based techniques, and performing extensive ablation studies to show the effect of each model choice. Our hierarchical model is based on pre-trained models, taking advantage of the recent advancement of transfer learning techniques, focused on Arabic language.

Availability Evaluation of Object Detection Based on Deep Learning Method by Using Multitemporal and Multisensor Data for Nuclear Activity Analysis (핵 활동 분석을 위한 다시기·다종 위성영상의 딥러닝 모델 기반 객체탐지의 활용성 평가)

  • Seong, Seon-kyeong;Choi, Ho-seong;Mo, Jun-sang;Choi, Jae-wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1083-1094
    • /
    • 2021
  • In order to monitor nuclear activity in inaccessible areas, it is necessary to establish a methodology to analyze changesin nuclear activity-related objects using high-resolution satellite images. However, traditional object detection and change detection techniques using satellite images have difficulties in applying detection results to various fields because effects of seasons and weather at the time of image acquisition. Therefore, in this paper, an object of interest was detected in a satellite image using a deep learning model, and object changes in the satellite image were analyzed based on object detection results. An initial training of the deep learning model was performed using an open dataset for object detection, and additional training dataset for the region of interest were generated and applied to transfer learning. After detecting objects by multitemporal and multisensory satellite images, we tried to detect changes in objects in the images by using them. In the experiments, it was confirmed that the object detection results of various satellite images can be directly used for change detection for nuclear activity-related monitoring in inaccessible areas.

Development of Deep Learning Structure for Defective Pixel Detection of Next-Generation Smart LED Display Board using Imaging Device (영상장치를 이용한 차세대 스마트 LED 전광판의 불량픽셀 검출을 위한 딥러닝 구조 개발)

  • Sun-Gu Lee;Tae-Yoon Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.345-349
    • /
    • 2023
  • In this paper, we propose a study on the development of deep learning structure for defective pixel detection of next-generation smart LED display board using imaging device. In this research, a technique utilizing imaging devices and deep learning is introduced to automatically detect defects in outdoor LED billboards. Through this approach, the effective management of LED billboards and the resolution of various errors and issues are aimed. The research process consists of three stages. Firstly, the planarized image data of the billboard is processed through calibration to completely remove the background and undergo necessary preprocessing to generate a training dataset. Secondly, the generated dataset is employed to train an object recognition network. This network is composed of a Backbone and a Head. The Backbone employs CSP-Darknet to extract feature maps, while the Head utilizes extracted feature maps as the basis for object detection. Throughout this process, the network is adjusted to align the Confidence score and Intersection over Union (IoU) error, sustaining continuous learning. In the third stage, the created model is employed to automatically detect defective pixels on actual outdoor LED billboards. The proposed method, applied in this paper, yielded results from accredited measurement experiments that achieved 100% detection of defective pixels on real LED billboards. This confirms the improved efficiency in managing and maintaining LED billboards. Such research findings are anticipated to bring about a revolutionary advancement in the management of LED billboards.