• Title/Summary/Keyword: Deep Learning Analysis attack

Search Result 36, Processing Time 0.025 seconds

Recent advances in deep learning-based side-channel analysis

  • Jin, Sunghyun;Kim, Suhri;Kim, HeeSeok;Hong, Seokhie
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.292-304
    • /
    • 2020
  • As side-channel analysis and machine learning algorithms share the same objective of classifying data, numerous studies have been proposed for adapting machine learning to side-channel analysis. However, a drawback of machine learning algorithms is that their performance depends on human engineering. Therefore, recent studies in the field focus on exploiting deep learning algorithms, which can extract features automatically from data. In this study, we survey recent advances in deep learning-based side-channel analysis. In particular, we outline how deep learning is applied to side-channel analysis, based on deep learning architectures and application methods. Furthermore, we describe its properties when using different architectures and application methods. Finally, we discuss our perspective on future research directions in this field.

Proposing a New Approach for Detecting Malware Based on the Event Analysis Technique

  • Vu Ngoc Son
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.107-114
    • /
    • 2023
  • The attack technique by the malware distribution form is a dangerous, difficult to detect and prevent attack method. Current malware detection studies and proposals are often based on two main methods: using sign sets and analyzing abnormal behaviors using machine learning or deep learning techniques. This paper will propose a method to detect malware on Endpoints based on Event IDs using deep learning. Event IDs are behaviors of malware tracked and collected on Endpoints' operating system kernel. The malware detection proposal based on Event IDs is a new research approach that has not been studied and proposed much. To achieve this purpose, this paper proposes to combine different data mining methods and deep learning algorithms. The data mining process is presented in detail in section 2 of the paper.

Novel Deep Learning-Based Profiling Side-Channel Analysis on the Different-Device (이종 디바이스 환경에 효과적인 신규 딥러닝 기반 프로파일링 부채널 분석)

  • Woo, Ji-Eun;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.987-995
    • /
    • 2022
  • Deep learning-based profiling side-channel analysis has been many proposed. Deep learning-based profiling analysis is a technique that trains the relationship between the side-channel information and the intermediate values to the neural network, then finds the secret key of the attack device using the trained neural network. Recently, cross-device profiling side channel analysis was proposed to consider the realistic deep learning-based profiling side channel analysis scenarios. However, it has a limitation in that attack performance is lowered if the profiling device and the attack device have not the same chips. In this paper, an environment in which the profiling device and the attack device have not the same chips is defined as the different-device, and a novel deep learning-based profiling side-channel analysis on different-device is proposed. Also, MCNN is used to well extract the characteristic of each data. We experimented with the six different boards to verify the attack performance of the proposed method; as a result, when the proposed method was used, the minimum number of attack traces was reduced by up to 25 times compared to without the proposed method.

A Novel Framework for APT Attack Detection Based on Network Traffic

  • Vu Ngoc Son
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.52-60
    • /
    • 2024
  • APT (Advanced Persistent Threat) attack is a dangerous, targeted attack form with clear targets. APT attack campaigns have huge consequences. Therefore, the problem of researching and developing the APT attack detection solution is very urgent and necessary nowadays. On the other hand, no matter how advanced the APT attack, it has clear processes and lifecycles. Taking advantage of this point, security experts recommend that could develop APT attack detection solutions for each of their life cycles and processes. In APT attacks, hackers often use phishing techniques to perform attacks and steal data. If this attack and phishing phase is detected, the entire APT attack campaign will be crash. Therefore, it is necessary to research and deploy technology and solutions that could detect early the APT attack when it is in the stages of attacking and stealing data. This paper proposes an APT attack detection framework based on the Network traffic analysis technique using open-source tools and deep learning models. This research focuses on analyzing Network traffic into different components, then finds ways to extract abnormal behaviors on those components, and finally uses deep learning algorithms to classify Network traffic based on the extracted abnormal behaviors. The abnormal behavior analysis process is presented in detail in section III.A of the paper. The APT attack detection method based on Network traffic is presented in section III.B of this paper. Finally, the experimental process of the proposal is performed in section IV of the paper.

Analysis of Security Problems of Deep Learning Technology (딥러닝 기술이 가지는 보안 문제점에 대한 분석)

  • Choi, Hee-Sik;Cho, Yang-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.9-16
    • /
    • 2019
  • In this paper, it will analyze security problems, so technology's potential can apply to business security area. First, in order to deep learning do security tasks sufficiently in the business area, deep learning requires repetitive learning with large amounts of data. In this paper, to acquire learning ability to do stable business tasks, it must detect abnormal IP packets and attack such as normal software with malicious code. Therefore, this paper will analyze whether deep learning has the cognitive ability to detect various attack. In this paper, to deep learning to reach the system and reliably execute the business model which has problem, this paper will develop deep learning technology which is equipped with security engine to analyze new IP about Session and do log analysis and solve the problem of mathematical role which can extract abnormal data and distinguish infringement of system data. Then it will apply to business model to drop the vulnerability and improve the business performance.

S-PRESENT Cryptanalysis through Know-Plaintext Attack Based on Deep Learning (딥러닝 기반의 알려진 평문 공격을 통한 S-PRESENT 분석)

  • Se-jin Lim;Hyun-Ji Kim;Kyung-Bae Jang;Yea-jun Kang;Won-Woong Kim;Yu-Jin Yang;Hwa-Jeong Seo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.193-200
    • /
    • 2023
  • Cryptanalysis can be performed by various techniques such as known plaintext attack, differential attack, side-channel analysis, and the like. Recently, many studies have been conducted on cryptanalysis using deep learning. A known-plaintext attack is a technique that uses a known plaintext and ciphertext pair to find a key. In this paper, we use deep learning technology to perform a known-plaintext attack against S-PRESENT, a reduced version of the lightweight block cipher PRESENT. This paper is significant in that it is the first known-plaintext attack based on deep learning performed on a reduced lightweight block cipher. For cryptanalysis, MLP (Multi-Layer Perceptron) and 1D and 2D CNN(Convolutional Neural Network) models are used and optimized, and the performance of the three models is compared. It showed the highest performance in 2D convolutional neural networks, but it was possible to attack only up to some key spaces. From this, it can be seen that the known-plaintext attack through the MLP model and the convolutional neural network is limited in attackable key bits.

Weight Recovery Attacks for DNN-Based MNIST Classifier Using Side Channel Analysis and Implementation of Countermeasures (부채널 분석을 이용한 DNN 기반 MNIST 분류기 가중치 복구 공격 및 대응책 구현)

  • Youngju Lee;Seungyeol Lee;Jeacheol Ha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.919-928
    • /
    • 2023
  • Deep learning technology is used in various fields such as self-driving cars, image creation, and virtual voice implementation, and deep learning accelerators have been developed for high-speed operation in hardware devices. However, several side channel attacks that recover secret information inside the accelerator using side-channel information generated when the deep learning accelerator operates have been recently researched. In this paper, we implemented a DNN(Deep Neural Network)-based MNIST digit classifier on a microprocessor and attempted a correlation power analysis attack to confirm that the weights of deep learning accelerator could be sufficiently recovered. In addition, to counter these power analysis attacks, we proposed a Node-CUT shuffling method that applies the principle of misalignment at the time of power measurement. It was confirmed through experiments that the proposed countermeasure can effectively defend against side-channel attacks, and that the additional calculation amount is reduced by more than 1/3 compared to using the Fisher-Yates shuffling method.

A Study on Performance Improvement of Non-Profiling Based Power Analysis Attack against CRYSTALS-Dilithium (CRYSTALS-Dilithium 대상 비프로파일링 기반 전력 분석 공격 성능 개선 연구)

  • Sechang Jang;Minjong Lee;Hyoju Kang;Jaecheol Ha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.1
    • /
    • pp.33-43
    • /
    • 2023
  • The National Institute of Standards and Technology (NIST), which is working on the Post-Quantum Cryptography (PQC) standardization project, announced four algorithms that have been finalized for standardization. In this paper, we demonstrate through experiments that private keys can be exposed by Correlation Power Analysis (CPA) and Differential Deep Learning Analysis (DDLA) attacks on polynomial coefficient-wise multiplication algorithms that operate in the process of generating signatures using CRYSTALS-Dilithium algorithm. As a result of the experiment on ARM-Cortex-M4, we succeeded in recovering the private key coefficient using CPA or DDLA attacks. In particular, when StandardScaler preprocessing and continuous wavelet transform applied power traces were used in the DDLA attack, the minimum number of power traces required for attacks is reduced and the Normalized Maximum Margines (NMM) value increased by about 3 times. Conseqently, the proposed methods significantly improves the attack performance.

Deep Learning-Based Automation Cyber Attack Convergence Trend Analysis Mechanism for Deep Learning-Based Security Vulnerability Analysis (사이버공격 융합 동향 분석을 위한 딥러닝 기반 보안 취약점 분석 자동화 메커니즘)

  • Kim, Jinsu;Park, Namje
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.1
    • /
    • pp.99-107
    • /
    • 2022
  • In the current technological society, where various technologies are converged into one and being transformed into new technologies, new cyber attacks are being made just as they keep pace with the changes in society. In particular, due to the convergence of various attacks into one, it is difficult to protect the system with only the existing security system. A lot of information is being generated to respond to such cyber attacks. However, recklessly generated vulnerability information can induce confusion by providing unnecessary information to administrators. Therefore, this paper proposes a mechanism to assist in the analysis of emerging cyberattack convergence technologies by providing differentiated vulnerability information to managers by learning documents using deep learning-based language learning models, extracting vulnerability information and classifying them according to the MITRE ATT&CK framework.

Reverse Engineering of Deep Learning Network Secret Information Through Side Channel Attack (부채널 분석을 이용한 딥러닝 네트워크 신규 내부 비밀정보 복원 방법 연구)

  • Park, Sujin;Lee, Juheon;Kim, HeeSeok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.855-867
    • /
    • 2022
  • As the need for a deep learning accelerator increases with the development of IoT equipment, research on the implementation and safety verification of the deep learning accelerator is actively. In this paper, we propose a new side channel analysis methodology for secret information that overcomes the limitations of the previous study in Usenix 2019. We overcome the disadvantage of limiting the range of weights and restoring only a portion of the weights in the previous work, and restore the IEEE754 32bit single-precision with 99% accuracy with a new method using CPA. In addition, it overcomes the limitations of existing studies that can reverse activation functions only for specific inputs. Using deep learning, we reverse activation functions with 99% accuracy without conditions for input values with a new method. This paper not only overcomes the limitations of previous studies, but also proves that the proposed new methodology is effective.