• Title/Summary/Keyword: Deep Learning AI

Search Result 643, Processing Time 0.026 seconds

Autonomous Vehicles as Safety and Security Agents in Real-Life Environments

  • Al-Absi, Ahmed Abdulhakim
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.7-12
    • /
    • 2022
  • Safety and security are the topmost priority in every environment. With the aid of Artificial Intelligence (AI), many objects are becoming more intelligent, conscious, and curious of their surroundings. The recent scientific breakthroughs in autonomous vehicular designs and development; powered by AI, network of sensors and the rapid increase of Internet of Things (IoTs) could be utilized in maintaining safety and security in our environments. AI based on deep learning architectures and models, such as Deep Neural Networks (DNNs), is being applied worldwide in the automotive design fields like computer vision, natural language processing, sensor fusion, object recognition and autonomous driving projects. These features are well known for their identification, detective and tracking abilities. With the embedment of sensors, cameras, GPS, RADAR, LIDAR, and on-board computers in many of these autonomous vehicles being developed, these vehicles can properly map their positions and proximity to everything around them. In this paper, we explored in detail several ways in which these enormous features embedded in these autonomous vehicles, such as the network of sensors fusion, computer vision and natural image processing, natural language processing, and activity aware capabilities of these automobiles, could be tapped and utilized in safeguarding our lives and environment.

The Influence of Creator Information on Preference for Artificial Intelligence- and Human-generated Artworks

  • Nam, Seungmin;Song, Jiwon;Kim, Chai-Youn
    • Science of Emotion and Sensibility
    • /
    • v.25 no.3
    • /
    • pp.107-116
    • /
    • 2022
  • Purpose: Researchers have shown that aesthetic judgments of artworks depend on contexts, such as the authenticity of an artwork (Newman & Bloom, 2011) and an artwork's location of display (Kirk et al., 2009; Silveira et al., 2015). The present study aims to examine whether contextual information related to the creator, such as whether an artwork was created by a human or artificial intelligence (AI), influences viewers' preference judgments of an artwork. Methods: Images of Impressionist landscape paintings were selected as human-made artworks. AI-made artwork stimuli were created using Google's Deep Dream Generator by mimicking the Impressionist style via deep learning algorithms. Participants performed a preference rating task on each of the 108 artwork stimuli accompanied by one of the two creator labels. After this task, an art experience questionnaire (AEQ) was given to participants to examine whether individual differences in art experience influence their preference judgments. Results: Setting AEQ scores as a covariate in a two-way ANCOVA analysis, the stimuli with the human-made context were preferred over the stimuli with the AI-made context. Regarding the types of stimuli, the viewers preferred AI-made stimuli to human-made stimuli. There was no interaction effect between the two factors. Conclusion: These results suggest that preferences for visual artworks are influenced by the contextual information of the creator when the individual differences in art experience are controlled.

A Vision Transformer Based Recommender System Using Side Information (부가 정보를 활용한 비전 트랜스포머 기반의 추천시스템)

  • Kwon, Yujin;Choi, Minseok;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.119-137
    • /
    • 2022
  • Recent recommendation system studies apply various deep learning models to represent user and item interactions better. One of the noteworthy studies is ONCF(Outer product-based Neural Collaborative Filtering) which builds a two-dimensional interaction map via outer product and employs CNN (Convolutional Neural Networks) to learn high-order correlations from the map. However, ONCF has limitations in recommendation performance due to the problems with CNN and the absence of side information. ONCF using CNN has an inductive bias problem that causes poor performances for data with a distribution that does not appear in the training data. This paper proposes to employ a Vision Transformer (ViT) instead of the vanilla CNN used in ONCF. The reason is that ViT showed better results than state-of-the-art CNN in many image classification cases. In addition, we propose a new architecture to reflect side information that ONCF did not consider. Unlike previous studies that reflect side information in a neural network using simple input combination methods, this study uses an independent auxiliary classifier to reflect side information more effectively in the recommender system. ONCF used a single latent vector for user and item, but in this study, a channel is constructed using multiple vectors to enable the model to learn more diverse expressions and to obtain an ensemble effect. The experiments showed our deep learning model improved performance in recommendation compared to ONCF.

Energy-Aware Data-Preprocessing Scheme for Efficient Audio Deep Learning in Solar-Powered IoT Edge Computing Environments (태양 에너지 수집형 IoT 엣지 컴퓨팅 환경에서 효율적인 오디오 딥러닝을 위한 에너지 적응형 데이터 전처리 기법)

  • Yeontae Yoo;Dong Kun Noh
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.159-164
    • /
    • 2023
  • Solar energy harvesting IoT devices prioritize maximizing the utilization of collected energy due to the periodic recharging nature of solar energy, rather than minimizing energy consumption. Meanwhile, research on edge AI, which performs machine learning near the data source instead of the cloud, is actively conducted for reasons such as data confidentiality and privacy, response time, and cost. One such research area involves performing various audio AI applications using audio data collected from multiple IoT devices in an IoT edge computing environment. However, in most studies, IoT devices only perform sensing data transmission to the edge server, and all processes, including data preprocessing, are performed on the edge server. In this case, it not only leads to overload issues on the edge server but also causes network congestion by transmitting unnecessary data for learning. On the other way, if data preprocessing is delegated to each IoT device to address this issue, it leads to another problem of increased blackout time due to energy shortages in the devices. In this paper, we aim to alleviate the problem of increased blackout time in devices while mitigating issues in server-centric edge AI environments by determining where the data preprocessed based on the energy state of each IoT device. In the proposed method, IoT devices only perform the preprocessing process, which includes sound discrimination and noise removal, and transmit to the server if there is more energy available than the energy threshold required for the basic operation of the device.

Case Study of Building a Malicious Domain Detection Model Considering Human Habitual Characteristics: Focusing on LSTM-based Deep Learning Model (인간의 습관적 특성을 고려한 악성 도메인 탐지 모델 구축 사례: LSTM 기반 Deep Learning 모델 중심)

  • Jung Ju Won
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.65-72
    • /
    • 2023
  • This paper proposes a method for detecting malicious domains considering human habitual characteristics by building a Deep Learning model based on LSTM (Long Short-Term Memory). DGA (Domain Generation Algorithm) malicious domains exploit human habitual errors, resulting in severe security threats. The objective is to swiftly and accurately respond to changes in malicious domains and their evasion techniques through typosquatting to minimize security threats. The LSTM-based Deep Learning model automatically analyzes and categorizes generated domains as malicious or benign based on malware-specific features. As a result of evaluating the model's performance based on ROC curve and AUC accuracy, it demonstrated 99.21% superior detection accuracy. Not only can this model detect malicious domains in real-time, but it also holds potential applications across various cyber security domains. This paper proposes and explores a novel approach aimed at safeguarding users and fostering a secure cyber environment against cyber attacks.

A Study on Improvement of Buffer Cache Performance for File I/O in Deep Learning (딥러닝의 파일 입출력을 위한 버퍼캐시 성능 개선 연구)

  • Jeongha Lee;Hyokyung Bahn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.93-98
    • /
    • 2024
  • With the rapid advance in AI (artificial intelligence) and high-performance computing technologies, deep learning is being used in various fields. Deep learning proceeds training by randomly reading a large amount of data and repeats this process. A large number of files are randomly repeatedly referenced during deep learning, which shows different access characteristics from traditional workloads with temporal locality. In order to cope with the difficulty in caching caused by deep learning, we propose a new sampling method that aims at reducing the randomness of dataset reading and adaptively operating on existing buffer cache algorithms. We show that the proposed policy reduces the miss rate of the buffer cache by 16% on average and up to 33% compared to the existing method, and improves the execution time by up to 24%.

Modeling and Simulation on One-vs-One Air Combat with Deep Reinforcement Learning (깊은강화학습 기반 1-vs-1 공중전 모델링 및 시뮬레이션)

  • Moon, Il-Chul;Jung, Minjae;Kim, Dongjun
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.1
    • /
    • pp.39-46
    • /
    • 2020
  • The utilization of artificial intelligence (AI) in the engagement has been a key research topic in the defense field during the last decade. To pursue this utilization, it is imperative to acquire a realistic simulation to train an AI engagement agent with a synthetic, but realistic field. This paper is a case study of training an AI agent to operate with a hardware realism in the air-warfare dog-fighting. Particularly, this paper models the pursuit of an opponent in the dog-fighting setting with a gun-only engagement. In this context, the AI agent requires to make a decision on the pursuit style and intensity. We developed a realistic hardware simulator and trained the agent with a reinforcement learning. Our training shows a success resulting in a lead pursuit with a decreased engagement time and a high reward.

A Study on the AI Model for Prediction of Demand for Cold Chain Distribution of Drugs (의약품 콜드체인 유통 수요 예측을 위한 AI 모델에 관한 연구)

  • Hee-young Kim;Gi-hwan Ryu;Jin Cai ;Hyeon-kon Son
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.763-768
    • /
    • 2023
  • In this paper, the existing statistical method (ARIMA) and machine learning method (Informer) were developed and compared to predict the distribution volume of pharmaceuticals. It was found that a machine learning-based model is advantageous for daily data prediction, and it is effective to use ARIMA for monthly prediction and switch to Informer as the data increases. The prediction error rate (RMSE) was reduced by 26.6% compared to the previous method, and the prediction accuracy was improved by 13%, resulting in a result of 86.2%. Through this thesis, we find that there is an advantage of obtaining the best results by ensembleing statistical methods and machine learning methods. In addition, machine learning-based AI models can derive the best results through deep learning operations even in irregular situations, and after commercialization, performance is expected to improve as the amount of data increases.

An Overloaded Vehicle Identifying System based on Object Detection Model (객체 인식 모델을 활용한 적재 불량 화물차 탐지 시스템)

  • Jung, Woojin;Park, Jinuk;Park, Yongju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1794-1799
    • /
    • 2022
  • Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions due to the abnormal weight distribution, and can cause great damage once an accident occurs. therefore we propose to build an object detection-based AI model to identify overloaded vehicles that cause such social problems. In addition, we present a simple yet effective method to construct an object detection model for the large-scale vehicle images. In particular, we utilize the large-scale of vehicle image sets provided by open AI-Hub, which include the overloaded vehicles. We inspected the specific features of sizes of vehicles and types of image sources, and pre-processed these images to train a deep learning-based object detection model. Also, we propose an integrated system for tracking the detected vehicles. Finally, we demonstrated that the detection performance of the overloaded vehicle was improved by about 23% compared to the one using raw data.

Malwares Attack Detection Using Ensemble Deep Restricted Boltzmann Machine

  • K. Janani;R. Gunasundari
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.64-72
    • /
    • 2024
  • In recent times cyber attackers can use Artificial Intelligence (AI) to boost the sophistication and scope of attacks. On the defense side, AI is used to enhance defense plans, to boost the robustness, flexibility, and efficiency of defense systems, which means adapting to environmental changes to reduce impacts. With increased developments in the field of information and communication technologies, various exploits occur as a danger sign to cyber security and these exploitations are changing rapidly. Cyber criminals use new, sophisticated tactics to boost their attack speed and size. Consequently, there is a need for more flexible, adaptable and strong cyber defense systems that can identify a wide range of threats in real-time. In recent years, the adoption of AI approaches has increased and maintained a vital role in the detection and prevention of cyber threats. In this paper, an Ensemble Deep Restricted Boltzmann Machine (EDRBM) is developed for the classification of cybersecurity threats in case of a large-scale network environment. The EDRBM acts as a classification model that enables the classification of malicious flowsets from the largescale network. The simulation is conducted to test the efficacy of the proposed EDRBM under various malware attacks. The simulation results show that the proposed method achieves higher classification rate in classifying the malware in the flowsets i.e., malicious flowsets than other methods.