• Title/Summary/Keyword: Deep Features

Search Result 1,096, Processing Time 0.029 seconds

Clinical Investigation of Burns from Caramelized Sugar Candy (Dalgona) (달고나에 의한 화상의 임상적 특징)

  • Joo, Hong Sil;Choi, Joo Heon
    • Journal of the Korean Burn Society
    • /
    • v.24 no.2
    • /
    • pp.30-33
    • /
    • 2021
  • Purpose: Dalgona, a kind of candy made of caramelized sugar, is a popular snack for children. Given the popularity of preparing dalgona, increasingly many patients are treated for burns sustained while preparing dalgona. We report the clinical features and dangers of burns from dalgona. Methods: We retrospectively reviewed the clinical records of 11 inpatients and outpatients who had been treated for burns they received while preparing dalgona from March 2020 to December 2020. The data reviewed were age, sex, the severity of the burn, the size and location of the burn, the type of treatment, and the place where the injury occurred. Results: The age of the patients ranged from 3 to 19 years, and the average age was 10.2 years (2 male, 9 female). Three patients had superficial second-degree burns, while eight had deep second-degree or third-degree burns. Most of the cases were treated with a local skin flap or skin graft. All the burned lesions were on the hands and feet. In all cases, the burns occurred at home due to accidental spillage. Conclusion: Most of the patients were children and teenagers, and they had serious burns. Therefore, we report these findings to emphasize the need for public awareness of the potential for burn injuries to occur during dalgona preparation.

Multimodal Attention-Based Fusion Model for Context-Aware Emotion Recognition

  • Vo, Minh-Cong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.18 no.3
    • /
    • pp.11-20
    • /
    • 2022
  • Human Emotion Recognition is an exciting topic that has been attracting many researchers for a lengthy time. In recent years, there has been an increasing interest in exploiting contextual information on emotion recognition. Some previous explorations in psychology show that emotional perception is impacted by facial expressions, as well as contextual information from the scene, such as human activities, interactions, and body poses. Those explorations initialize a trend in computer vision in exploring the critical role of contexts, by considering them as modalities to infer predicted emotion along with facial expressions. However, the contextual information has not been fully exploited. The scene emotion created by the surrounding environment, can shape how people perceive emotion. Besides, additive fusion in multimodal training fashion is not practical, because the contributions of each modality are not equal to the final prediction. The purpose of this paper was to contribute to this growing area of research, by exploring the effectiveness of the emotional scene gist in the input image, to infer the emotional state of the primary target. The emotional scene gist includes emotion, emotional feelings, and actions or events that directly trigger emotional reactions in the input image. We also present an attention-based fusion network, to combine multimodal features based on their impacts on the target emotional state. We demonstrate the effectiveness of the method, through a significant improvement on the EMOTIC dataset.

Attention-based CNN-BiGRU for Bengali Music Emotion Classification

  • Subhasish Ghosh;Omar Faruk Riad
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.47-54
    • /
    • 2023
  • For Bengali music emotion classification, deep learning models, particularly CNN and RNN are frequently used. But previous researches had the flaws of low accuracy and overfitting problem. In this research, attention-based Conv1D and BiGRU model is designed for music emotion classification and comparative experimentation shows that the proposed model is classifying emotions more accurate. We have proposed a Conv1D and Bi-GRU with the attention-based model for emotion classification of our Bengali music dataset. The model integrates attention-based. Wav preprocessing makes use of MFCCs. To reduce the dimensionality of the feature space, contextual features were extracted from two Conv1D layers. In order to solve the overfitting problems, dropouts are utilized. Two bidirectional GRUs networks are used to update previous and future emotion representation of the output from the Conv1D layers. Two BiGRU layers are conntected to an attention mechanism to give various MFCC feature vectors more attention. Moreover, the attention mechanism has increased the accuracy of the proposed classification model. The vector is finally classified into four emotion classes: Angry, Happy, Relax, Sad; using a dense, fully connected layer with softmax activation. The proposed Conv1D+BiGRU+Attention model is efficient at classifying emotions in the Bengali music dataset than baseline methods. For our Bengali music dataset, the performance of our proposed model is 95%.

Phrase-Chunk Level Hierarchical Attention Networks for Arabic Sentiment Analysis

  • Abdelmawgoud M. Meabed;Sherif Mahdy Abdou;Mervat Hassan Gheith
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.120-128
    • /
    • 2023
  • In this work, we have presented ATSA, a hierarchical attention deep learning model for Arabic sentiment analysis. ATSA was proposed by addressing several challenges and limitations that arise when applying the classical models to perform opinion mining in Arabic. Arabic-specific challenges including the morphological complexity and language sparsity were addressed by modeling semantic composition at the Arabic morphological analysis after performing tokenization. ATSA proposed to perform phrase-chunks sentiment embedding to provide a broader set of features that cover syntactic, semantic, and sentiment information. We used phrase structure parser to generate syntactic parse trees that are used as a reference for ATSA. This allowed modeling semantic and sentiment composition following the natural order in which words and phrase-chunks are combined in a sentence. The proposed model was evaluated on three Arabic corpora that correspond to different genres (newswire, online comments, and tweets) and different writing styles (MSA and dialectal Arabic). Experiments showed that each of the proposed contributions in ATSA was able to achieve significant improvement. The combination of all contributions, which makes up for the complete ATSA model, was able to improve the classification accuracy by 3% and 2% on Tweets and Hotel reviews datasets, respectively, compared to the existing models.

Water Detection in an Open Environment: A Comprehensive Review

  • Muhammad Abdullah, Sandhu;Asjad, Amin;Muhammad Ali, Qureshi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Open surface water body extraction is gaining popularity in recent years due to its versatile applications. Multiple techniques are used for water detection based on applications. Different applications of Radar as LADAR, Ground-penetrating, synthetic aperture, and sounding radars are used to detect water. Shortwave infrared, thermal, optical, and multi-spectral sensors are widely used to detect water bodies. A stereo camera is another way to detect water and different methods are applied to the images of stereo cameras such as deep learning, machine learning, polarization, color variations, and descriptors are used to segment water and no water areas. The Satellite is also used at a high level to get water imagery and the captured imagery is processed using various methods such as features extraction, thresholding, entropy-based, and machine learning to find water on the surface. In this paper, we have summarized all the available methods to detect water areas. The main focus of this survey is on water detection especially in small patches or in small areas. The second aim of this survey is to detect water hazards for unmanned vehicles and off-sure navigation.

Two-phase flow pattern online monitoring system based on convolutional neural network and transfer learning

  • Hong Xu;Tao Tang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4751-4758
    • /
    • 2022
  • Two-phase flow may almost exist in every branch of the energy industry. For the corresponding engineering design, it is very essential and crucial to monitor flow patterns and their transitions accurately. With the high-speed development and success of deep learning based on convolutional neural network (CNN), the study of flow pattern identification recently almost focused on this methodology. Additionally, the photographing technique has attractive implementation features as well, since it is normally considerably less expensive than other techniques. The development of such a two-phase flow pattern online monitoring system is the objective of this work, which seldom studied before. The ongoing preliminary engineering design (including hardware and software) of the system are introduced. The flow pattern identification method based on CNNs and transfer learning was discussed in detail. Several potential CNN candidates such as ALexNet, VggNet16 and ResNets were introduced and compared with each other based on a flow pattern dataset. According to the results, ResNet50 is the most promising CNN network for the system owing to its high precision, fast classification and strong robustness. This work can be a reference for the online monitoring system design in the energy system.

Prediction of Ship Resistance Performance Based on the Convolutional Neural Network With Voxelization (합성곱 신경망과 복셀화를 활용한 선박 저항 성능 예측)

  • Jongseo Park;Minjoo Choi;Gisu Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.110-119
    • /
    • 2023
  • The prediction of ship resistance performance is typically obtained by Computational Fluid Dynamics (CFD) simulations or model tests in towing tank. However, these methods are both costly and time-consuming, so hull-form designers use statistical methods for a quick feed-back during the early design stage. It is well known that results from statistical methods are often less accurate compared to those from CFD simulations or model tests. To overcome this problem, this study suggests a new approach using a Convolution Neural Network (CNN) with voxelized hull-form data. By converting the original Computer Aided Design (CAD) data into three dimensional voxels, the CNN is able to abstract the hull-form data, focusing only on important features. For the verification, suggested method in this study was compared to a parametric method that uses hull parameters such as length overall and block coefficient as inputs. The results showed that the use of voxelized data significantly improves resistance performance prediction accuracy, compared to the parametric approach.

Generative Interactive Psychotherapy Expert (GIPE) Bot

  • Ayesheh Ahrari Khalaf;Aisha Hassan Abdalla Hashim;Akeem Olowolayemo;Rashidah Funke Olanrewaju
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2023
  • One of the objectives and aspirations of scientists and engineers ever since the development of computers has been to interact naturally with machines. Hence features of artificial intelligence (AI) like natural language processing and natural language generation were developed. The field of AI that is thought to be expanding the fastest is interactive conversational systems. Numerous businesses have created various Virtual Personal Assistants (VPAs) using these technologies, including Apple's Siri, Amazon's Alexa, and Google Assistant, among others. Even though many chatbots have been introduced through the years to diagnose or treat psychological disorders, we are yet to have a user-friendly chatbot available. A smart generative cognitive behavioral therapy with spoken dialogue systems support was then developed using a model Persona Perception (P2) bot with Generative Pre-trained Transformer-2 (GPT-2). The model was then implemented using modern technologies in VPAs like voice recognition, Natural Language Understanding (NLU), and text-to-speech. This system is a magnificent device to help with voice-based systems because it can have therapeutic discussions with the users utilizing text and vocal interactive user experience.

Jointly Learning of Heavy Rain Removal and Super-Resolution in Single Images

  • Vu, Dac Tung;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.113-117
    • /
    • 2020
  • Images were taken under various weather such as rain, haze, snow often show low visibility, which can dramatically decrease accuracy of some tasks in computer vision: object detection, segmentation. Besides, previous work to enhance image usually downsample the image to receive consistency features but have not yet good upsample algorithm to recover original size. So, in this research, we jointly implement removal streak in heavy rain image and super resolution using a deep network. We put forth a 2-stage network: a multi-model network followed by a refinement network. The first stage using rain formula in the single image and two operation layers (addition, multiplication) removes rain streak and noise to get clean image in low resolution. The second stage uses refinement network to recover damaged background information as well as upsample, and receive high resolution image. Our method improves visual quality image, gains accuracy in human action recognition task in datasets. Extensive experiments show that our network outperforms the state of the art (SoTA) methods.

  • PDF

Salient Video Frames Sampling Method Using the Mean of Deep Features for Efficient Model Training (효율적인 모델 학습을 위한 심층 특징의 평균값을 활용한 의미 있는 비디오 프레임 추출 기법)

  • Yoon, Hyeok;Kim, Young-Gi;Han, Ji-Hyeong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.318-321
    • /
    • 2021
  • 최근 정보통신의 발달과 함께 인터넷에 접속하는 사용자 수와 그에 따른 비디오 데이터의 전송량이 늘어나는 추세이다. 이렇게 늘어나는 많은 비디오 데이터를 관리하고 분석하기 위해서 최근에는 딥 러닝 기법을 많이 활용하게 된다. 일반적으로 비디오 데이터에 딥 러닝 모델을 학습할 때 컴퓨터 자원의 한계로 인해 전체 비디오 프레임에서 균등한 간격 또는 무작위로 프레임을 선택하는 방법을 많이 사용한다. 하지만 학습에 사용되는 비디오 데이터는 항상 시간 축에 따라 같은 문맥을 담고 있는 Trimmed 비디오라고 가정할 수가 없다. 만약 같지 않은 문맥을 지닌 Untrimmed 비디오에서 균등한 간격 또는 무작위로 프레임을 선택해서 사용하게 된다면 비디오의 범주와 관련이 없는 프레임이 샘플링 될 가능성이 있기 때문에 모델의 학습 및 최적화에 전혀 도움이 되지 않는다. 이를 해결하기 위해 우리는 각 비디오 프레임에서 심층 특징을 추출하여 평균값을 계산하고 이와 각 추출된 심층특징들과 코사인 유사도를 계산해서 얻은 유사도 점수를 바탕으로 Untrimmed 비디오에서 의미 있는 비디오 프레임을 추출하는 기법을 제안한다. 그리고 Untrimmed 비디오로 구성된 데이터셋으로 유명한 ActivityNet 데이터셋에 대해서 대표적인 2가지 프레임 샘플링 방식(균등한 간격, 무작위)과 비교하여 우리가 제안하는 기법이 Untrimmed 비디오에서 효과적으로 비디오의 범주에 해당하는 의미 있는 프레임 추출이 가능함을 보일 것이다. 우리가 실험에 사용한 코드는 https://github.com/titania7777/VideoFrameSampler에서 확인할 수 있다.

  • PDF