• Title/Summary/Keyword: Deep Features

Search Result 1,096, Processing Time 0.029 seconds

A Deep Neural Network Architecture for Real-Time Semantic Segmentation on Embedded Board (임베디드 보드에서 실시간 의미론적 분할을 위한 심층 신경망 구조)

  • Lee, Junyeop;Lee, Youngwan
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.94-98
    • /
    • 2018
  • We propose Wide Inception ResNet (WIR Net) an optimized neural network architecture as a real-time semantic segmentation method for autonomous driving. The neural network architecture consists of an encoder that extracts features by applying a residual connection and inception module, and a decoder that increases the resolution by using transposed convolution and a low layer feature map. We also improved the performance by applying an ELU activation function and optimized the neural network by reducing the number of layers and increasing the number of filters. The performance evaluations used an NVIDIA Geforce GTX 1080 and TX1 boards to assess the class and category IoU for cityscapes data in the driving environment. The experimental results show that the accuracy of class IoU 53.4, category IoU 81.8 and the execution speed of $640{\times}360$, $720{\times}480$ resolution image processing 17.8fps and 13.0fps on TX1 board.

HyperConv: spatio-spectral classication of hyperspectral images with deep convolutional neural networks (심층 컨볼루션 신경망을 사용한 초분광 영상의 공간 분광학적 분류 기법)

  • Ko, Seyoon;Jun, Goo;Won, Joong-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.859-872
    • /
    • 2016
  • Land cover classification is an important tool for preventing natural disasters, collecting environmental information, and monitoring natural resources. Hyperspectral imaging is widely used for this task thanks to sufficient spectral information. However, the curse of dimensionality, spatiotemporal variability, and lack of labeled data make it difficult to classify the land cover correctly. We propose a novel classification framework for land cover classification of hyperspectral data based on convolutional neural networks. The proposed framework naturally incorporates full spectral features with the information from neighboring pixels and has advantages over existing methods that require additional feature extraction or pre-processing steps. Empirical evaluation results show that the proposed framework provides good generalization power with classification accuracies better than (or comparable to) the most advanced existing classifiers.

The Studies on the Development of Radiation Pneumonitis and Its Related Factors (방사선폐렴의 발생과 촉진요인에 관한 고찰)

  • Suh, Hyun-Suk;Rhee, Chung-Sik
    • Radiation Oncology Journal
    • /
    • v.5 no.2
    • /
    • pp.119-129
    • /
    • 1987
  • With the introduction of X-rays of higher energy that have higher penetrability, it has become possible to treat the deep-seated tumor with increased local control rate. But at the same time it has incrased the damage to the deep seated organs, especially to the lung which is known to be the less radiotolerable tissue in the body. This study analyses the 66 patients who were exposed to the irradiation of the lung, and examines the development of radiation pneumonitis and its related factors. The results of the study are summarized as follows: 1, The 66 patients were consisted of 40 cases of lung cancer, 15 cases of breast cancer and 11 cases of mediastinal tumors. There were 37 males and 29 females with the male to female ratio 1.3: 1. A male to female ratio in the lung cancer was 3: 1. 2. Among 66 patients, 26 patients $(39\%)$ developed the radiographical changes of acute radiation pneumonitis and 13 out of 26 patients $(50\%)$ showed the clinical features of acute radiation pneumonitis. 3. The onest of acute radiation pneumonitis ranged from 10 days to 6 months after the completion of radiotherapy. 4. There was a statistically significant close relationship between the development of radiation pneumonitis and the radiation dose. 5. As the irradiated lung volume increased, the development of radiation pneumonitis increased. But the statistical significance was not strong. 6. The increased incidence of radiation pneumonitis was observed when the chemotherapy was given before or concomittantly with radiotherapy. 7 There was no significant correlation between the development of radiation pneumonitis and the age, smoking and the presence of underlying lung disease.

  • PDF

Biometrics System Technology Trends Based on Biosignal (생체신호 기반 바이오인식 시스템 기술 동향)

  • Choi, Gyu-Ho;Moon, Hae-Min;Pan, Sung-Bum
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.381-391
    • /
    • 2017
  • Biometric technology is a technology for authenticating a user using the physical or behavioral features of the inherent characteristics of the individual. With the necessity and efficiency of the technology in the fields of finance, security, access control, medical welfare, inspection, and entertainment, the service range has been expanding. Biometrics using biometric information such as fingerprints and faces have been exposed to counterfeit and disguised threats and become a social problem. Recent studies using a bio-signal from the inside of the body other than the bio-information of the external body are being developed. This paper analyzes the recent research and technology of biometric systems using bio-signals, ECG, heart sounds, EEG, and EMG to present the skills needed for the development direction. In the future, utilizing the deep learning to build and analyze database to manage bio-signal based big data for the complex condition of individuals, biometrics technologies suitable for real time environment are expected to be researched.

Fast and All-Purpose Area-Based Imagery Registration Using ConvNets (ConvNet을 활용한 영역기반 신속/범용 영상정합 기술)

  • Baek, Seung-Cheol
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.1034-1042
    • /
    • 2016
  • Together with machine-learning frameworks, area-based imagery registration techniques can be easily applied to diverse types of image pairs without predefined features and feature descriptors. However, feature detectors are often used to quickly identify candidate image patch pairs, limiting the applicability of these registration techniques. In this paper, we propose a ConvNet (Convolutional Network) "Dart" that provides not only the matching metric between patches, but also information about their distance, which are helpful in reducing the search space of the corresponding patch pairs. In addition, we propose a ConvNet "Fad" to identify the patches that are difficult for Dart to improve the accuracy of registration. These two networks were successfully implemented using Deep Learning with the help of a number of training instances generated from a few registered image pairs, and were successfully applied to solve a simple image registration problem, suggesting that this line of research is promising.

A Study on Lane Detection Based on Split-Attention Backbone Network (Split-Attention 백본 네트워크를 활용한 차선 인식에 관한 연구)

  • Song, In seo;Lee, Seon woo;Kwon, Jang woo;Won, Jong hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.178-188
    • /
    • 2020
  • This paper proposes a lane recognition CNN network using split-attention network as a backbone to extract feature. Split-attention is a method of assigning weight to each channel of a feature map in the CNN feature extraction process; it can reliably extract the features of an image during the rapidly changing driving environment of a vehicle. The proposed deep neural networks in this paper were trained and evaluated using the Tusimple data set. The change in performance according to the number of layers of the backbone network was compared and analyzed. A result comparable to the latest research was obtained with an accuracy of up to 96.26, and FN showed the best result. Therefore, even in the driving environment of an actual vehicle, stable lane recognition is possible without misrecognition using the model proposed in this study.

American Sign Language Recognition System Using Wearable Sensors with Deep Learning Approach (딥러닝 방식의 웨어러블 센서를 사용한 미국식 수화 인식 시스템)

  • Chong, Teak-Wei;Kim, Beom-Joon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.291-298
    • /
    • 2020
  • Sign language was designed for the deaf and dumb people to allow them to communicate with others and connect to the society. However, sign language is uncommon to the rest of the society. The unresolved communication barrier had eventually isolated deaf and dumb people from the society. Hence, this study focused on design and implementation of a wearable sign language interpreter. 6 inertial measurement unit (IMU) were placed on back of hand palm and each fingertips to capture hand and finger movements and orientations. Total of 28 proposed word-based American Sign Language were collected during the experiment, while 156 features were extracted from the collected data for classification. With the used of the long short-term memory (LSTM) algorithm, this system achieved up to 99.89% of accuracy. The high accuracy system performance indicated that this proposed system has a great potential to serve the deaf and dumb communities and resolve the communication gap.

Yolo based Light Source Object Detection for Traffic Image Big Data Processing (교통 영상 빅데이터 처리를 위한 Yolo 기반 광원 객체 탐지)

  • Kang, Ji-Soo;Shim, Se-Eun;Jo, Sun-Moon;Chung, Kyungyong
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.40-46
    • /
    • 2020
  • As interest in traffic safety increases, research on autonomous driving, which reduces the incidence of traffic accidents, is increased. Object recognition and detection are essential for autonomous driving. Therefore, research on object recognition and detection through traffic image big data is being actively conducted to determine the road conditions. However, because most existing studies use only daytime data, it is difficult to recognize objects on night roads. Particularly, in the case of a light source object, it is difficult to use the features of the daytime as it is due to light smudging and whitening. Therefore, this study proposes Yolo based light source object detection for traffic image big data processing. The proposed method performs image processing by applying color model transitions to night traffic image. The object group is determined by extracting the characteristics of the object through image processing. It is possible to increase the recognition rate of light source object detection on a night road through a deep learning model using candidate group data.

GAN-based Image-to-image Translation using Multi-scale Images (다중 스케일 영상을 이용한 GAN 기반 영상 간 변환 기법)

  • Chung, Soyoung;Chung, Min Gyo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.767-776
    • /
    • 2020
  • GcGAN is a deep learning model to translate styles between images under geometric consistency constraint. However, GcGAN has a disadvantage that it does not properly maintain detailed content of an image, since it preserves the content of the image through limited geometric transformation such as rotation or flip. Therefore, in this study, we propose a new image-to-image translation method, MSGcGAN(Multi-Scale GcGAN), which improves this disadvantage. MSGcGAN, an extended model of GcGAN, performs style translation between images in a direction to reduce semantic distortion of images and maintain detailed content by learning multi-scale images simultaneously and extracting scale-invariant features. The experimental results showed that MSGcGAN was better than GcGAN in both quantitative and qualitative aspects, and it translated the style more naturally while maintaining the overall content of the image.

Detection of NoSQL Injection Attack in Non-Relational Database Using Convolutional Neural Network and Recurrent Neural Network (비관계형 데이터베이스 환경에서 CNN과 RNN을 활용한 NoSQL 삽입 공격 탐지 모델)

  • Seo, Jeong-eun;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.3
    • /
    • pp.455-464
    • /
    • 2020
  • With a variety of data types and high utilization of data, non-relational databases are a popular data storage because it supports better availability and scalability. The increasing use of this technology also brings the risk of NoSQL injection attacks. Existing works mostly discuss the rule-based detection of NoSQL injection attacks that it is hard to deal with NoSQL queries beyond the coverage of the rules. In this paper, we propose a model for detecting NoSQL injection attacks. Our model is based on deep learning algorithms that select features from NoSQL queries using CNN, and classify NoSQL queries using RNN. Also, we experiment the proposed model to compare with existing models, and find that our model outperforms traditional models in terms of detection rate.