• Title/Summary/Keyword: Deep Features

Search Result 1,096, Processing Time 0.026 seconds

A STUDY ON SIALOGRAPHIC IMAGE OF NORMAL PAROTID GLANDS BY PANORAMIC VIEW (Panorama 촬영술에 의한 정상 성인 이하선 조영상에 관한 연구)

  • Kim Jae-Duk
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.26 no.2
    • /
    • pp.7-17
    • /
    • 1996
  • This study was performed to determine the postitional relationships of two lobes of parenchyma and to analysis the anatomical feature and its variations of duct on the panoramic views of the normal parotid glands in adults. Materials included 66 panoramic views and anterioposterior views of sialograms of selected persons and the radiograms of the gland experimentally reproduced on dry skull with lead foil and the reference images of computed tomograms of normal persons. Results were as follows : 1. On panoramic view of sialogram, the superficial lobe was revealed with totally being superimposed with the mandibular ramus and condyle and its tail portion superimposed with mandibular angle area, the deep lobe was revealed between the posterior border of the ramus and the mastoid process, and the isthmus was begin from the marked furcation off main duct and superimposed partially with the medial part of the deep lobe. 2, The mean length and the lateral extension of parenchyma was 63.18±8.05mm and 21.78±4.87mm respectively on panoramic view and showed no statistical relationship between them. 3. The main duct was generally perpendicular to the posterior border of ramus at middle portion and its configurations revealed 57,58% of curvilinear type, 21.21% sigmoid type, 15.15% reverse sigmoid type. 4, The interlobular ducts of the deep lobe showed relatively well defined features between the mandibular ramus and the mastoid process.

  • PDF

A Study on Application of Reinforcement Learning Algorithm Using Pixel Data (픽셀 데이터를 이용한 강화 학습 알고리즘 적용에 관한 연구)

  • Moon, Saemaro;Choi, Yonglak
    • Journal of Information Technology Services
    • /
    • v.15 no.4
    • /
    • pp.85-95
    • /
    • 2016
  • Recently, deep learning and machine learning have attracted considerable attention and many supporting frameworks appeared. In artificial intelligence field, a large body of research is underway to apply the relevant knowledge for complex problem-solving, necessitating the application of various learning algorithms and training methods to artificial intelligence systems. In addition, there is a dearth of performance evaluation of decision making agents. The decision making agent that can find optimal solutions by using reinforcement learning methods designed through this research can collect raw pixel data observed from dynamic environments and make decisions by itself based on the data. The decision making agent uses convolutional neural networks to classify situations it confronts, and the data observed from the environment undergoes preprocessing before being used. This research represents how the convolutional neural networks and the decision making agent are configured, analyzes learning performance through a value-based algorithm and a policy-based algorithm : a Deep Q-Networks and a Policy Gradient, sets forth their differences and demonstrates how the convolutional neural networks affect entire learning performance when using pixel data. This research is expected to contribute to the improvement of artificial intelligence systems which can efficiently find optimal solutions by using features extracted from raw pixel data.

Class-Labeling Method for Designing a Deep Neural Network of Capsule Endoscopic Images Using a Lesion-Focused Knowledge Model

  • Park, Ye-Seul;Lee, Jung-Won
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.171-183
    • /
    • 2020
  • Capsule endoscopy is one of the increasingly demanded diagnostic methods among patients in recent years because of its ability to observe small intestine difficulties. It is often conducted for 12 to 14 hours, but significant frames constitute only 10% of whole frames. Thus, it has been designed to automatically acquire significant frames through deep learning. For example, studies to track the position of the capsule (stomach, small intestine, etc.) or to extract lesion-related information (polyps, etc.) have been conducted. However, although grouping or labeling the training images according to similar features can improve the performance of a learning model, various attributes (such as degree of wrinkles, presence of valves, etc.) are not considered in conventional approaches. Therefore, we propose a class-labeling method that can be used to design a learning model by constructing a knowledge model focused on main lesions defined in standard terminologies for capsule endoscopy (minimal standard terminology, capsule endoscopy structured terminology). This method enables the designing of a systematic learning model by labeling detailed classes through differentiation of similar characteristics.

A Method for Improving Resolution and Critical Dimension Measurement of an Organic Layer Using Deep Learning Superresolution

  • Kim, Sangyun;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.153-164
    • /
    • 2018
  • In semiconductor manufacturing, critical dimensions indicate the features of patterns formed by the semiconductor process. The purpose of measuring critical dimensions is to confirm whether patterns are made as intended. The deposition process for an organic light emitting diode (OLED) forms a luminous organic layer on the thin-film transistor electrode. The position of this organic layer greatly affects the luminescent performance of an OLED. Thus, a system for measuring the position of the organic layer from outside of the vacuum chamber in real-time is desired for monitoring the deposition process. Typically, imaging from large stand-off distances results in low spatial resolution because of diffraction blur, and it is difficult to attain an adequate industrial-level measurement. The proposed method offers a new superresolution single-image using a conversion formula between two different optical systems obtained by a deep learning technique. This formula converts an image measured at long distance and with low-resolution optics into one image as if it were measured with high-resolution optics. The performance of this method is evaluated with various samples in terms of spatial resolution and measurement performance.

Adversarial Detection with Gaussian Process Regression-based Detector

  • Lee, Sangheon;Kim, Noo-ri;Cho, Youngwha;Choi, Jae-Young;Kim, Suntae;Kim, Jeong-Ah;Lee, Jee-Hyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4285-4299
    • /
    • 2019
  • Adversarial attack is a technique that causes a malfunction of classification models by adding noise that cannot be distinguished by humans, which poses a threat to a deep learning model. In this paper, we propose an efficient method to detect adversarial images using Gaussian process regression. Existing deep learning-based adversarial detection methods require numerous adversarial images for their training. The proposed method overcomes this problem by performing classification based on the statistical features of adversarial images and clean images that are extracted by Gaussian process regression with a small number of images. This technique can determine whether the input image is an adversarial image by applying Gaussian process regression based on the intermediate output value of the classification model. Experimental results show that the proposed method achieves higher detection performance than the other deep learning-based adversarial detection methods for powerful attacks. In particular, the Gaussian process regression-based detector shows better detection performance than the baseline models for most attacks in the case with fewer adversarial examples.

Anthropomorphic Animal Face Masking using Deep Convolutional Neural Network based Animal Face Classification

  • Khan, Rafiul Hasan;Lee, Youngsuk;Lee, Suk-Hwan;Kwon, Oh-Jun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.558-572
    • /
    • 2019
  • Anthropomorphism is the attribution of human traits, emotions, or intentions to non-human entities. Anthropomorphic animal face masking is the process by which human characteristics are plotted on the animal kind. In this research, we are proposing a compact system which finds the resemblance between a human face and animal face using Deep Convolutional Neural Network (DCNN) and later applies morphism between them. The whole process is done by firstly finding which animal most resembles the particular human face through a DCNN based animal face classification. And secondly, doing triangulation based morphing between the particular human face and the most resembled animal face. Compared to the conventional manual Control Point Selection system using an animator, we are proposing a Viola-Jones algorithm based Control Point selection process which detects facial features for the human face and takes the Control Points automatically. To initiate our approach, we built our own dataset containing ten thousand animal faces and a fourteen layer DCNN. The simulation results firstly demonstrate that the accuracy of our proposed DCNN architecture outperforms the related methods for the animal face classification. Secondly, the proposed morphing method manages to complete the morphing process with less deformation and without any human assistance.

Rank-weighted reconstruction feature for a robust deep neural network-based acoustic model

  • Chung, Hoon;Park, Jeon Gue;Jung, Ho-Young
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.235-241
    • /
    • 2019
  • In this paper, we propose a rank-weighted reconstruction feature to improve the robustness of a feed-forward deep neural network (FFDNN)-based acoustic model. In the FFDNN-based acoustic model, an input feature is constructed by vectorizing a submatrix that is created by slicing the feature vectors of frames within a context window. In this type of feature construction, the appropriate context window size is important because it determines the amount of trivial or discriminative information, such as redundancy, or temporal context of the input features. However, we ascertained whether a single parameter is sufficiently able to control the quantity of information. Therefore, we investigated the input feature construction from the perspectives of rank and nullity, and proposed a rank-weighted reconstruction feature herein, that allows for the retention of speech information components and the reduction in trivial components. The proposed method was evaluated in the TIMIT phone recognition and Wall Street Journal (WSJ) domains. The proposed method reduced the phone error rate of the TIMIT domain from 18.4% to 18.0%, and the word error rate of the WSJ domain from 4.70% to 4.43%.

Deep Multi-task Network for Simultaneous Hazy Image Semantic Segmentation and Dehazing (안개영상의 의미론적 분할 및 안개제거를 위한 심층 멀티태스크 네트워크)

  • Song, Taeyong;Jang, Hyunsung;Ha, Namkoo;Yeon, Yoonmo;Kwon, Kuyong;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1000-1010
    • /
    • 2019
  • Image semantic segmentation and dehazing are key tasks in the computer vision. In recent years, researches in both tasks have achieved substantial improvements in performance with the development of Convolutional Neural Network (CNN). However, most of the previous works for semantic segmentation assume the images are captured in clear weather and show degraded performance under hazy images with low contrast and faded color. Meanwhile, dehazing aims to recover clear image given observed hazy image, which is an ill-posed problem and can be alleviated with additional information about the image. In this work, we propose a deep multi-task network for simultaneous semantic segmentation and dehazing. The proposed network takes single haze image as input and predicts dense semantic segmentation map and clear image. The visual information getting refined during the dehazing process can help the recognition task of semantic segmentation. On the other hand, semantic features obtained during the semantic segmentation process can provide cues for color priors for objects, which can help dehazing process. Experimental results demonstrate the effectiveness of the proposed multi-task approach, showing improved performance compared to the separate networks.

Keypoint-based Deep Learning Approach for Building Footprint Extraction Using Aerial Images

  • Jeong, Doyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.111-122
    • /
    • 2021
  • Building footprint extraction is an active topic in the domain of remote sensing, since buildings are a fundamental unit of urban areas. Deep convolutional neural networks successfully perform footprint extraction from optical satellite images. However, semantic segmentation produces coarse results in the output, such as blurred and rounded boundaries, which are caused by the use of convolutional layers with large receptive fields and pooling layers. The objective of this study is to generate visually enhanced building objects by directly extracting the vertices of individual buildings by combining instance segmentation and keypoint detection. The target keypoints in building extraction are defined as points of interest based on the local image gradient direction, that is, the vertices of a building polygon. The proposed framework follows a two-stage, top-down approach that is divided into object detection and keypoint estimation. Keypoints between instances are distinguished by merging the rough segmentation masks and the local features of regions of interest. A building polygon is created by grouping the predicted keypoints through a simple geometric method. Our model achieved an F1-score of 0.650 with an mIoU of 62.6 for building footprint extraction using the OpenCitesAI dataset. The results demonstrated that the proposed framework using keypoint estimation exhibited better segmentation performance when compared with Mask R-CNN in terms of both qualitative and quantitative results.

Deep Face Verification Based Convolutional Neural Network

  • Fredj, Hana Ben;Bouguezzi, Safa;Souani, Chokri
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.256-266
    • /
    • 2021
  • The Convolutional Neural Network (CNN) has recently made potential improvements in face verification applications. In fact, different models based on the CNN have attained commendable progress in the classification rate using a massive amount of data in an uncontrolled environment. However, the enormous computation costs and the considerable use of storage causes a noticeable problem during training. To address these challenges, we focus on relevant data trained within the CNN model by integrating a lifting method for a better tradeoff between the data size and the computational efficiency. Our approach is characterized by the advantage that it does not need any additional space to store the features. Indeed, it makes the model much faster during the training and classification steps. The experimental results on Labeled Faces in the Wild and YouTube Faces datasets confirm that the proposed CNN framework improves performance in terms of precision. Obviously, our model deliberately designs to achieve significant speedup and reduce computational complexity in deep CNNs without any accuracy loss. Compared to the existing architectures, the proposed model achieves competitive results in face recognition tasks