• Title/Summary/Keyword: Deep Features

Search Result 1,096, Processing Time 0.025 seconds

FakedBits- Detecting Fake Information on Social Platforms using Multi-Modal Features

  • Dilip Kumar, Sharma;Bhuvanesh, Singh;Saurabh, Agarwal;Hyunsung, Kim;Raj, Sharma
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.51-73
    • /
    • 2023
  • Social media play a significant role in communicating information across the globe, connecting with loved ones, getting the news, communicating ideas, etc. However, a group of people uses social media to spread fake information, which has a bad impact on society. Therefore, minimizing fake news and its detection are the two primary challenges that need to be addressed. This paper presents a multi-modal deep learning technique to address the above challenges. The proposed modal can use and process visual and textual features. Therefore, it has the ability to detect fake information from visual and textual data. We used EfficientNetB0 and a sentence transformer, respectively, for detecting counterfeit images and for textural learning. Feature embedding is performed at individual channels, whilst fusion is done at the last classification layer. The late fusion is applied intentionally to mitigate the noisy data that are generated by multi-modalities. Extensive experiments are conducted, and performance is evaluated against state-of-the-art methods. Three real-world benchmark datasets, such as MediaEval (Twitter), Weibo, and Fakeddit, are used for experimentation. Result reveals that the proposed modal outperformed the state-of-the-art methods and achieved an accuracy of 86.48%, 82.50%, and 88.80%, respectively, for MediaEval (Twitter), Weibo, and Fakeddit datasets.

1-D CNN deep learning of impedance signals for damage monitoring in concrete anchorage

  • Quoc-Bao Ta;Quang-Quang Pham;Ngoc-Lan Pham;Jeong-Tae Kim
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.1
    • /
    • pp.43-62
    • /
    • 2023
  • Damage monitoring is a prerequisite step to ensure the safety and performance of concrete structures. Smart aggregate (SA) technique has been proven for its advantage to detect early-stage internal cracks in concrete. In this study, a 1-D CNN-based method is developed for autonomously classifying the damage feature in a concrete anchorage zone using the raw impedance signatures of the embedded SA sensor. Firstly, an overview of the developed method is presented. The fundamental theory of the SA technique is outlined. Also, a 1-D CNN classification model using the impedance signals is constructed. Secondly, the experiment on the SA-embedded concrete anchorage zone is carried out, and the impedance signals of the SA sensor are recorded under different applied force levels. Finally, the feasibility of the developed 1-D CNN model is examined to classify concrete damage features via noise-contaminated signals. The results show that the developed method can accurately classify the damaged features in the concrete anchorage zone.

Sleep apnea detection from a single-lead ECG signal with GAF transform feature-extraction through deep learning (GAF 변환을 사용한 딥 러닝 기반 단일 리드 ECG 신호에서의 수면 무호흡 감지)

  • Zhou, Yu;Lee, Seungeun;Kang, Kyungtae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.57-58
    • /
    • 2022
  • Sleep apnea (SA) is a common chronic sleep disorder that disrupts breathing during sleep. Clinically, the standard for diagnosing SA involves nocturnal polysomnography (PSG). However, this requires expert human intervention and considerable time, which limits the availability of SA diagnoses in public health sectors. Therefore, ECG-based methods for SA detection have been proposed to automate the PSG procedure and reduce its discomfort. We propose a preprocessing method to convert the one-dimensional time series of ECG into two-dimensional images using the Gramian Angular Field (GAF) algorithm, extract temporal features, and use a two-dimensional convolutional neural network for classification. The results of this study demonstrated that the proposed method can perform SA detection with specificity, sensitivity, accuracy, and area under the curve (AUC) of 88.89%, 81.50%, 86.11%, and 0.85, respectively. Our experimental results show that SA is successfully classified by extracting preprocessing transforms with temporal features.

  • PDF

Land Cover Classifier Using Coordinate Hash Encoder (좌표 해시 인코더를 활용한 토지피복 분류 모델)

  • Yongsun Yoon;Dongjae Kwon
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1771-1777
    • /
    • 2023
  • With the advancements of deep learning, many semantic segmentation-based methods for land cover classification have been proposed. However, existing deep learning-based models only use image information and cannot guarantee spatiotemporal consistency. In this study, we propose a land cover classification model using geographical coordinates. First, the coordinate features are extracted through the Coordinate Hash Encoder, which is an extension of the Multi-resolution Hash Encoder, an implicit neural representation technique, to the longitude-latitude coordinate system. Next, we propose an architecture that combines the extracted coordinate features with different levels of U-net decoder. Experimental results show that the proposed method improves the mean intersection over union by about 32% and improves the spatiotemporal consistency.

Prognostication of Hepatocellular Carcinoma Using Artificial Intelligence

  • Subin Heo;Hyo Jung Park;Seung Soo Lee
    • Korean Journal of Radiology
    • /
    • v.25 no.6
    • /
    • pp.550-558
    • /
    • 2024
  • Hepatocellular carcinoma (HCC) is a biologically heterogeneous tumor characterized by varying degrees of aggressiveness. The current treatment strategy for HCC is predominantly determined by the overall tumor burden, and does not address the diverse prognoses of patients with HCC owing to its heterogeneity. Therefore, the prognostication of HCC using imaging data is crucial for optimizing patient management. Although some radiologic features have been demonstrated to be indicative of the biologic behavior of HCC, traditional radiologic methods for HCC prognostication are based on visually-assessed prognostic findings, and are limited by subjectivity and inter-observer variability. Consequently, artificial intelligence has emerged as a promising method for image-based prognostication of HCC. Unlike traditional radiologic image analysis, artificial intelligence based on radiomics or deep learning utilizes numerous image-derived quantitative features, potentially offering an objective, detailed, and comprehensive analysis of the tumor phenotypes. Artificial intelligence, particularly radiomics has displayed potential in a variety of applications, including the prediction of microvascular invasion, recurrence risk after locoregional treatment, and response to systemic therapy. This review highlights the potential value of artificial intelligence in the prognostication of HCC as well as its limitations and future prospects.

Deep neural network based seafloor sediment mapping using bathymetric features of MBES multifrequency

  • Khomsin;Mukhtasor;Suntoyo;Danar Guruh Pratomo
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.101-114
    • /
    • 2024
  • Seafloor sediment mapping is an essential research topic in shallow coastal waters, especially in port development, benthic habitat mapping, and underwater communications. The seafloor sediments can be interpreted by collecting sediment samples directly in the field using a grab sampler or corer. Another method is optical, especially using underwater cameras and videos. Both methods each have weaknesses in terms of area coverage (mechanic) and accurate positioning (optic). The latest technology used to overcome it is the acoustic method (echosounder) with Global Navigation Satellite System (GNSS) Real Time Kinematic (RTK) positioning. Therefore, in this study will propose the classification of seafloor sediments in coastal waters using acoustic method that is Multibeam Echosounder (MBES) multi-frequency with five frequency (200 kHz, 250 kHz, 300 kHz, 350 kHz, and 400 kHz). In this study, the deep neural network (DNN) used the bathymetric multi frequency, bathymetric difference inters frequencies, and bathymetric features from 5 (five) frequencies as input layer and 4 (four) sediment types in 74 (seventy-four) sample sediment as output layer to make a seafloor sediment map. Results of sediment mapping using the DNN method show an overall accuracy of 71.6% (significant) and a kappa coefficient of 0.59 (moderate). The distribution of seafloor sediment in the study area is mainly silt (41.6%), followed by clayey sand (36.6%), sandy silt (14.2%), and silty sand (7.5%).

Daily Stock Price Forecasting Using Deep Neural Network Model (심층 신경회로망 모델을 이용한 일별 주가 예측)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.39-44
    • /
    • 2018
  • The application of deep neural networks to finance has received a great deal of attention from researchers because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from large sets of data, which is required to describe nonlinear input-output relations of financial time series. The paper presents a new deep neural network model where single layered autoencoder and 4 layered neural network are serially coupled for stock price forecasting. The autoencoder extracts deep features, which are fed into multi-layer neural networks to predict the next day's stock closing prices. The proposed deep neural network is progressively learned layer by layer ahead of the final learning of the total network. The proposed model to predict daily close prices of KOrea composite Stock Price Index (KOSPI) is built, and its performance is demonstrated.

Adversarial Example Detection and Classification Model Based on the Class Predicted by Deep Learning Model (데이터 예측 클래스 기반 적대적 공격 탐지 및 분류 모델)

  • Ko, Eun-na-rae;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1227-1236
    • /
    • 2021
  • Adversarial attack, one of the attacks on deep learning classification model, is attack that add indistinguishable perturbations to input data and cause deep learning classification model to misclassify the input data. There are various adversarial attack algorithms. Accordingly, many studies have been conducted to detect adversarial attack but few studies have been conducted to classify what adversarial attack algorithms to generate adversarial input. if adversarial attacks can be classified, more robust deep learning classification model can be established by analyzing differences between attacks. In this paper, we proposed a model that detects and classifies adversarial attacks by constructing a random forest classification model with input features extracted from a target deep learning model. In feature extraction, feature is extracted from a output value of hidden layer based on class predicted by the target deep learning model. Through Experiments the model proposed has shown 3.02% accuracy on clean data, 0.80% accuracy on adversarial data higher than the result of pre-existing studies and classify new adversarial attack that was not classified in pre-existing studies.

Structural Crack Detection Using Deep Learning: An In-depth Review

  • Safran Khan;Abdullah Jan;Suyoung Seo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.371-393
    • /
    • 2023
  • Crack detection in structures plays a vital role in ensuring their safety, durability, and reliability. Traditional crack detection methods sometimes need significant manual inspections, which are laborious, expensive, and prone to error by humans. Deep learning algorithms, which can learn intricate features from large-scale datasets, have emerged as a viable option for automated crack detection recently. This study presents an in-depth review of crack detection methods used till now, like image processing, traditional machine learning, and deep learning methods. Specifically, it will provide a comparative analysis of crack detection methods using deep learning, aiming to provide insights into the advancements, challenges, and future directions in this field. To facilitate comparative analysis, this study surveys publicly available crack detection datasets and benchmarks commonly used in deep learning research. Evaluation metrics employed to check the performance of different models are discussed, with emphasis on accuracy, precision, recall, and F1-score. Moreover, this study provides an in-depth analysis of recent studies and highlights key findings, including state-of-the-art techniques, novel architectures, and innovative approaches to address the shortcomings of the existing methods. Finally, this study provides a summary of the key insights gained from the comparative analysis, highlighting the potential of deep learning in revolutionizing methodologies for crack detection. The findings of this research will serve as a valuable resource for researchers in the field, aiding them in selecting appropriate methods for crack detection and inspiring further advancements in this domain.

Stress Level Based Emotion Classification Using Hybrid Deep Learning Algorithm

  • Sivasankaran Pichandi;Gomathy Balasubramanian;Venkatesh Chakrapani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3099-3120
    • /
    • 2023
  • The present fast-moving era brings a serious stress issue that affects elders and youngsters. Everyone has undergone stress factors at least once in their lifetime. Stress is more among youngsters as they are new to the working environment. whereas the stress factors for elders affect the individual and overall performance in an organization. Electroencephalogram (EEG) based stress level classification is one of the widely used methodologies for stress detection. However, the signal processing methods evolved so far have limitations as most of the stress classification models compute the stress level in a predefined environment to detect individual stress factors. Specifically, machine learning based stress classification models requires additional algorithm for feature extraction which increases the computation cost. Also due to the limited feature learning characteristics of machine learning algorithms, the classification performance reduces and inaccurate sometimes. It is evident from numerous research works that deep learning models outperforms machine learning techniques. Thus, to classify all the emotions based on stress level in this research work a hybrid deep learning algorithm is presented. Compared to conventional deep learning models, hybrid models outperforms in feature handing. Better feature extraction and selection can be made through deep learning models. Adding machine learning classifiers in deep learning architecture will enhance the classification performances. Thus, a hybrid convolutional neural network model was presented which extracts the features using CNN and classifies them through machine learning support vector machine. Simulation analysis of benchmark datasets demonstrates the proposed model performances. Finally, existing methods are comparatively analyzed to demonstrate the better performance of the proposed model as a result of the proposed hybrid combination.