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Image-Based HCC Prognostication: Traditional 
Approaches

The current treatment strategy for hepatocellular 
carcinoma (HCC) is primarily based on the overall tumor 
burden and liver function [1]. However, HCC is a biologically 
heterogeneous tumor with varying degrees of aggressiveness 
and risk of recurrence/metastasis. Consequently, patients 
with HCC with the same stage, even those with early or 
very early-stage HCC, can experience diverse prognoses. 
Several histopathologic, molecular, and genetic features 
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of HCC have been identified as prognostic markers. These 
include microvascular invasion (MVI), stemness features 
(i.e., cytokeratin 19 positivity), vessels encapsulating 
tumor clusters, and scirrhous and macro-trabecular massive 
subtypes [2,3]. Furthermore, gene expression profiling 
has revealed two distinct HCC subclasses: the proliferative 
class, characterized by chromosomal instability, aggressive 
histologic phenotype, and poor prognosis; and the non-
proliferative class, with chromosomal stability and 
favorable prognosis [4]. However, these molecular and 
histologic prognostic markers are only accessible when 
tumor tissue is obtained via biopsy or surgery. Given the 
current strategy of non-invasive, image-based diagnosis 
of HCC, these histopathologic prognostic markers are not 
available in many patients with HCC, which underscores the 
clinical significance of image-based prognostication in the 
management of HCC. Furthermore, owing to the increased 
understanding of biologic heterogeneity of HCC and 
availability of new therapeutic options, prognostic imaging 
is being increasingly recognized as a clinically relevant 
approach for implementing personalized medicine. 
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for conflicting findings. In light of these challenges and the 
unmet needs in traditional radiologic approaches, artificial 
intelligence (AI), particularly radiomics, has emerged as a 
promising alternative to image-based prognostication of 
HCC (Fig. 1). In this review, we have used the term ‘AI’ in its 
broadest original sense, not limiting its definition to deep 
learning alone.

Potential of AI

Unlike classic radiologic analysis, which relies on 
qualitative visual image interpretation, AI-based image 
analysis involves extraction of high-dimensional features 
from images and mining these features to make diagnostic, 
classification, or prognostic decisions. Radiomics and deep 
learning, the main AI-based approaches for radiologic 
image interpretation, comprise different technical processes 
[10,11]. Radiomic analysis involves a series of procedures, 
including image preprocessing, tumor segmentation, 
extraction and selection of radiomics features, and 
construction of a prediction model using the selected 
features. The radiomics features encompass multiple 

Increasing evidence suggests that the radiologic 
characteristics of HCC reflect its histologic and molecular 
features, and thus the biological behavior of the tumor. 
For example, radiologic features, such as non-smooth 
tumor margin, arterial phase peritumoral enhancement, 
and hepatobiliary phase peritumoral hypointensity, are 
suggestive of the presence of MVI [5]. Rim arterial phase 
hyperenhancement is also associated with aggressive 
histopathologic features of HCC, including stemness features, 
scirrhous and macro-trabecular-massive subtypes, and 
proliferative class [6,7]. Accordingly, HCC classified as LR-M 
according to the Liver Imaging Reporting and Data System 
(LI-RADS) is associated with a worse prognosis compared to 
that classified as LR-4 or LR-5 [8]. 

However, the interpretation of radiologic prognostic 
findings can be subjective, leading to inter-reader 
variability [9]. Most radiologic prognostic findings rely 
on a binary decision regarding whether the findings are 
present or absent. Therefore, determining the presence of 
a prognostic finding can be challenging, particularly in 
cases with intermediate findings. Additionally, integrating 
multiple prognostic findings can be complex, particularly 

Fig. 1. Comparative schematic descriptions of traditional radiologic versus radiomic approaches in the prognostication of hepatocellular 
carcinoma. The traditional radiologic method relies on the visual identification of prognostic imaging findings and interpretation of their 
clinical significance. In contrast, the radiomics approach entails tumor segmentation in images, followed by the extraction of numerous 
quantitative features, selection of relevant features, and development of a radiomics model for the specific prognostic task. APHE = 
arterial phase hyperenhancement, SI = signal intensity, HBP = hepatobiliary phase, MVI = microvascular invasion
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categories, including shape, histogram, texture, and higher-
order features which refer to texture features extracted after 
applying image filters. Radiomic analysis is based on classic 
machine learning, wherein a human expert predefines the 
key factors in the entire process. In contrast, deep learning 
algorithms are based on representation learning, in which no 
predefined feature engineering is implemented and instead, 
the algorithm learns the best way to solve the problem 
on its own by using training datasets. Regarding the 
assessment of HCC, radiomics and deep learning have the 
potential to offer an objective and comprehensive analysis 
of tumor phenotypes, which could overcome the limitations 
of conventional image analysis methods. However, AI comes 
with its own limitations, which will be discussed later in 
this review. 

AI for HCC Prognostication

Most AI applications for HCC prognostication are 
based on the radiomics approach. Multiple studies have 
demonstrated the feasibility and potential of radiomics 
in the prognostication of HCC, of which the key studies 
are summarized in Table 1 [12-24]. Several studies have 
also explored the feasibility of deep learning in the 
prognostication of HCC (Table 2) [25-30]. Notably, some 
researchers have combined deep learning and radiomic 
approaches, known as deep learning radiomics. In this 
approach, a convolutional neural network is used to extract 
deep learning radiomic features, and subsequent feature 
selection and modeling are conducted using the typical 
radiomic approach.

Prediction of HCC Recurrence Following Ablation, 
Resection, and Transplantation 

Radiomics has been utilized to predict the recurrence 
risk of HCC following potentially curative treatments, such 
as radiofrequency ablation therapy [24,25], resection 
[16,17,25,31,32], and liver transplantation [15]. Most 
of these studies focused on patients with early or very 
early-stage HCC. Ji et al. [16] developed preoperative 
and postoperative nomograms incorporating CT-based 
radiomic models to predict recurrence after surgical 
resection of HCC. They demonstrated that the integration 
of radiomic signatures improved nomogram performance, 
resulting in high predictive performances of preoperative 
and postoperative nomograms with C-indices of 0.78 and 
0.82, respectively. Liu et al. [25] developed deep learning 

algorithms based on contrast-enhanced ultrasound (US), 
and then created two different nomograms by incorporating 
these algorithms and clinical variables to predict recurrence 
following either radiofrequency ablation or surgical resection 
in patients with a single HCC lesion measuring 3 cm or 
smaller. Both nomograms were found to have good prediction 
performance with C-indices of 0.73 and 0.74 in the internal 
validation cohort. These nomograms may be valuable for 
selecting the appropriate treatment for patients with HCC 
who are eligible for both radiofrequency ablation and 
surgical resection, provided that the nomograms are further 
validated to confirm their generalizability. 

Prediction of Therapeutic Response in Intermediate to 
Advanced HCC

Several studies have previously explored the potential 
value of radiomics in predicting the response to palliative 
treatments such as trans-arterial chemoembolization [18,33], 
immune checkpoint inhibitors (ICIs) [13,19,34], and multi-
kinase targeted therapy [12] in patients with intermediate 
to advanced stage HCC. It was demonstrated that radiomics 
enables the identification of HCCs with high immune cell 
infiltration [35] and those expressing the programmed cell 
death-ligand 1 or 2 [19,34], which may correlate with the 
response to ICI therapy. However, no study has investigated 
whether radiomic models can predict the response to 
ICI treatment, indicating a need for further research in 
this area. A recent study by Bo et al. [12] explored the 
feasibility of a radiomic model in predicting the response to 
lenvatinib monotherapy in patients with unresectable HCC. 
In this study, unsupervised clustering analysis revealed the 
presence of two distinct subtypes of HCC based on radiomic 
features, which demonstrated markedly different response 
rates to lenvatinib monotherapy [12]. This finding suggests 
that tumor phenotype assessment based on radiomics may 
play a crucial role in personalizing treatment strategies 
for HCC, although further research is required to validate 
these findings. Zhang et al. [28] developed a deep learning 
radiomics model for predicting survival of patients with 
HCC after trans-arterial chemoembolization plus sorafenib 
treatment using contrast-enhanced CT images. Notably, 
in this study, a convolutional neural network was used to 
extract the deep learning radiomic features, and subsequent 
modeling was performed using penalized regression. 
The final nomogram integrating the deep learning 
radiomic signature and clinical data demonstrated good 
discrimination performance with a C-index of 0.739.
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Prediction of MVI
MVI is a critical prognostic factor linked to early 

recurrence of HCC following surgery and local ablation 
therapy [36,37]. Several studies have explored the use 
of radiomics [21,22,38-40] and deep learning [26,29,30] 
for predicting MVI in HCC, most of which developed 
prediction models by integrating AI algorithms as well 
as clinical, laboratory, and radiologic data. Among these 
studies, a recent multi-institutional study conducted by 
Xia et al. [21] reported high performance of the radiomic 
and hybrid models, with areas under the curve (AUCs) 
of 0.72 and 0.84, respectively. Furthermore, the models’ 
prediction of MVI presence was found to be associated 
with poor overall and recurrence-free survival. Additionally, 
gene expression analysis conducted in this study revealed 
that MVI-associated differentially expressed genes were 
commonly involved in glucose metabolism [21]. Song et 
al. [26] developed both deep learning and radiomic models 
using MRI, and showed that the performance of the deep 
learning algorithm was superior to that of the radiomics 
model (AUC of 0.915 vs. 0.731) in predicting MVI. However, 
the performance of the models was evaluated only through 
internal validation, thus leaving the generalizability of the 
models unproven.

Prediction of Other Prognostic Pathologic Features
Radiomics has been applied for the prediction of the 

prognostic histopathologic characteristics of HCC, such as 
cytokeratin-19 expression [20], vessels encapsulating tumor 
clusters [23], and macro-trabecular massive subtype [14]. 
Previous studies have demonstrated that the predictions of 
the radiomic models can help in the accurate identification 
of specific histopathologic characteristics and prognostic 
stratification of patients [14,20,23]. These findings support 
the hypothesis that radiologic tumor phenotypes reflect the 
histopathologic and molecular features and, thereby, the 
biologic behavior of tumors. However, considering that the 
biologic behavior of HCC is influenced by a variety of factors, 
the practical clinical relevance of these radiomic models that 
focus on a single histopathologic factor remains uncertain. 

Limitations and Future Directions

The radiomics approach has certain limitations, which 
have hindered its application in daily clinical practice. 
Radiomic analysis involves time-consuming and labor-
intensive processes such as segmentation and feature 

extraction. Recent advancements in deep learning for 
automated segmentation of CT or MRI images could 
facilitate the segmentation process. However, while 
algorithms for organ segmentation have displayed high 
performance [41,42], liver tumor segmentation using deep 
learning remains challenging and has failed to demonstrate 
satisfactory performance [10,43]. Another major concern is 
the reliability of radiomic features. Radiomic features are 
highly susceptible to variations stemming from differences 
in scanners, imaging techniques, image reconstruction 
algorithms, segmentation results, and methods for computing 
these features, all of which can impact the reproducibility 
of radiomic features and models [10,11,44]. To mitigate 
this problem, the image biomarker standardization 
initiative published consensus guidelines to standardize the 
definitions of radiomic features and reporting methods [45]. 
Furthermore, algorithms to minimize variations in radiomic 
features across different imaging protocols have also been 
proposed [46,47]. Nonetheless, ensuring harmonization and 
reproducibility in radiomics remains a formidable challenge 
[10,11]. Moreover, replicating a radiomics model from a 
research paper is extremely difficult, demanding identical 
training imaging data, segmentation, and computational 
methods as the original model. This highlights the need for 
transparent and standardized reporting of methodology and 
results in radiomics research. In order to assess the quality 
of the radiomics studies, a radiomics quality score has been 
proposed [48]. The radiomics quality score encompasses 
key components of radiomics research that should be 
clearly reported, including image protocol, methods 
for segmentation, feature extraction, feature selection, 
performance assessment, and public data sharing. 

Existing research on radiomics for HCC prognostication has 
predominantly focused on the outcomes following a single 
treatment method, without comparing it to alternative 
therapeutic options. A more practical approach is required, 
which can assist in selecting the most suitable treatment 
from various available therapeutic options. In addition, the 
actual clinical impact of radiomics, for example, the survival 
benefit obtained by radiomic-assisted treatment selection 
needs to be addressed in future research. 

Deep learning for HCC prognostication is considered to 
be in an even earlier stage of development than radiomics. 
All studies on deep learning for HCC prognosis preliminarily 
focus on technical feasibility. The reported algorithms 
require manual tumor segmentation and are not sufficiently 
validated for clinical use. Significant progress is required 
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for the integration of deep learning algorithms into clinical 
practice for HCC prognostication. Given the current CT and 
MRI examination protocols used for the assessment of HCC, 
a practically applicable algorithm would require multiple 
complicated functions, including automated liver and tumor 
segmentation, co-registration of multiphasic or multi-
sequence images, and prognostic assessment. Despite the 
limitations of deep learning algorithms as a standalone 
method for HCC prognostication, they may be used to 
facilitate radiomic analysis. This may involve the use of 
convolutional neural networks for feature extraction and/or 
selection, application of deep learning-based organ or tumor 
segmentation to radiomic analysis, and deep learning-based 
image conversion to improve the reproducibility of radiomic 
features. This aspect of deep learning needs to be further 
investigated.

Both radiomic models and deep learning algorithms 
utilize various image-derived features and are susceptible 
to the problem of overfitting. Therefore, rigorous clinical 
validation, preferably through external validation and multi-
center data, is mandatory to prove their generalizability 
in real-world clinical practice. Despite its potential, AI 
for HCC prognostication is not yet applicable to daily 
clinical practice due to certain limitations and insufficient 
validation. The development of well-validated AI algorithms 
that are suitable for daily clinical workflow and proof of 
their actual clinical benefit are prerequisites for the clinical 
adoption of AI for the management of patients with HCC. 

CONCLUSION

AI, particularly radiomics, has emerged as a promising 
tool for the image-based prognostication of HCC. 
Radiomics has demonstrated strong potential in diverse 
applications, including predicting MVI, assessing outcomes 
after locoregional and systemic treatment, and identifying 
unfavorable prognostic pathologic subtypes of HCC. However, 
radiomics has not yet been adopted in clinical practice due 
to some ongoing challenges, including its time-consuming 
nature and issues with reproducibility. Future studies should 
aim to streamline and standardize the radiomics process, 
thus reducing the hurdles for clinical integration. Most 
studies investigating deep learning for HCC prognosis are 
considered preliminary, with a focus on technical feasibility. 
For radiomics and deep learning to be applied in clinical 
practice, they must be incorporated seamlessly into the 
daily workflow. The development of well-constructed, 

accessible, and efficient AI algorithms, validated through 
rigorous clinical trials, will be pivotal for achieving this 
goal in the future.
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