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Hepatocellular carcinoma (HCC) is a biologically heterogeneous tumor characterized by varying degrees of aggressiveness.
The current treatment strategy for HCC is predominantly determined by the overall tumor burden, and does not address the
diverse prognoses of patients with HCC owing to its heterogeneity. Therefore, the prognostication of HCC using imaging data
is crucial for optimizing patient management. Although some radiologic features have been demonstrated to be indicative of
the biologic behavior of HCC, traditional radiologic methods for HCC prognostication are based on visually-assessed
prognostic findings, and are limited by subjectivity and inter-observer variability. Consequently, artificial intelligence has
emerged as a promising method for image-based prognostication of HCC. Unlike traditional radiologic image analysis,
artificial intelligence based on radiomics or deep learning utilizes numerous image-derived quantitative features, potentially
offering an objective, detailed, and comprehensive analysis of the tumor phenotypes. Artificial intelligence, particularly
radiomics has displayed potential in a variety of applications, including the prediction of microvascular invasion, recurrence
risk after locoregional treatment, and response to systemic therapy. This review highlights the potential value of artificial
intelligence in the prognostication of HCC as well as its limitations and future prospects.
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Image-Based HCC Prognostication: Traditional
Approaches

The current treatment strategy for hepatocellular
carcinoma (HCC) is primarily based on the overall tumor
burden and liver function [1]. However, HCC is a biologically
heterogeneous tumor with varying degrees of aggressiveness
and risk of recurrence/metastasis. Consequently, patients
with HCC with the same stage, even those with early or
very early-stage HCC, can experience diverse prognoses.
Several histopathologic, molecular, and genetic features

Received: January 18, 2024 Revised: March 13, 2024
Accepted: March 31, 2024

Corresponding author: Seung Soo Lee, MD, PhD, Department

of Radiology and Research Institute of Radiology, Asan Medical
Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-
gil, Songpa-gu, Seoul 05505, Republic of Korea

® E-mail: seungsoolee@amc.seoul.kr

This is an Open Access article distributed under the terms of

the Creative Commons Attribution Non-Commercial License
(https://creativecommons.org/licenses/by-nc/4.0) which permits
unrestricted non-commercial use, distribution, and reproduction in
any medium, provided the original work is properly cited.

550

of HCC have been identified as prognostic markers. These
include microvascular invasion (MVI), stemness features
(i.e., cytokeratin 19 positivity), vessels encapsulating
tumor clusters, and scirrhous and macro-trabecular massive
subtypes [2,3]. Furthermore, gene expression profiling

has revealed two distinct HCC subclasses: the proliferative
class, characterized by chromosomal instability, aggressive
histologic phenotype, and poor prognosis; and the non-
proliferative class, with chromosomal stability and
favorable prognosis [4]. However, these molecular and
histologic prognostic markers are only accessible when
tumor tissue is obtained via biopsy or surgery. Given the
current strategy of non-invasive, image-based diagnosis

of HCC, these histopathologic prognostic markers are not
available in many patients with HCC, which underscores the
clinical significance of image-based prognostication in the
management of HCC. Furthermore, owing to the increased
understanding of biologic heterogeneity of HCC and
availability of new therapeutic options, prognostic imaging
is being increasingly recognized as a clinically relevant
approach for implementing personalized medicine.

Copyright © 2024 The Korean Society of Radiology
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Artificial Intelligence for HCC Prognostication

Increasing evidence suggests that the radiologic
characteristics of HCC reflect its histologic and molecular
features, and thus the biological behavior of the tumor.
For example, radiologic features, such as non-smooth
tumor margin, arterial phase peritumoral enhancement,
and hepatobiliary phase peritumoral hypointensity, are
suggestive of the presence of MVI [5]. Rim arterial phase
hyperenhancement is also associated with aggressive

histopathologic features of HCC, including stemness features,

scirrhous and macro-trabecular-massive subtypes, and
proliferative class [6,7]. Accordingly, HCC classified as LR-M
according to the Liver Imaging Reporting and Data System
(LI-RADS) is associated with a worse prognosis compared to
that classified as LR-4 or LR-5 [8].

However, the interpretation of radiologic prognostic
findings can be subjective, leading to inter-reader
variability [9]. Most radiologic prognostic findings rely
on a binary decision regarding whether the findings are
present or absent. Therefore, determining the presence of
a prognostic finding can be challenging, particularly in
cases with intermediate findings. Additionally, integrating
multiple prognostic findings can be complex, particularly
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for conflicting findings. In light of these challenges and the
unmet needs in traditional radiologic approaches, artificial
intelligence (AI), particularly radiomics, has emerged as a
promising alternative to image-based prognostication of
HCC (Fig. 1). In this review, we have used the term ‘Al" in its
broadest original sense, not limiting its definition to deep
learning alone.

Potential of Al

Unlike classic radiologic analysis, which relies on
qualitative visual image interpretation, Al-based image
analysis involves extraction of high-dimensional features
from images and mining these features to make diagnostic,
classification, or prognostic decisions. Radiomics and deep
learning, the main Al-based approaches for radiologic
image interpretation, comprise different technical processes
[10,11]. Radiomic analysis involves a series of procedures,
including image preprocessing, tumor segmentation,
extraction and selection of radiomics features, and
construction of a prediction model using the selected
features. The radiomics features encompass multiple
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Fig. 1. Comparative schematic descriptions of traditional radiologic versus radiomic approaches in the prognostication of hepatocellular
carcinoma. The traditional radiologic method relies on the visual identification of prognostic imaging findings and interpretation of their
clinical significance. In contrast, the radiomics approach entails tumor segmentation in images, followed by the extraction of numerous
quantitative features, selection of relevant features, and development of a radiomics model for the specific prognostic task. APHE =
arterial phase hyperenhancement, SI = signal intensity, HBP = hepatobiliary phase, MVI = microvascular invasion
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categories, including shape, histogram, texture, and higher-
order features which refer to texture features extracted after
applying image filters. Radiomic analysis is based on classic
machine learning, wherein a human expert predefines the
key factors in the entire process. In contrast, deep learning
algorithms are based on representation learning, in which no
predefined feature engineering is implemented and instead,
the algorithm learns the best way to solve the problem

on its own by using training datasets. Regarding the
assessment of HCC, radiomics and deep learning have the
potential to offer an objective and comprehensive analysis
of tumor phenotypes, which could overcome the limitations
of conventional image analysis methods. However, AI comes
with its own limitations, which will be discussed later in
this review.

AI for HCC Prognostication

Most AI applications for HCC prognostication are
based on the radiomics approach. Multiple studies have
demonstrated the feasibility and potential of radiomics
in the prognostication of HCC, of which the key studies
are summarized in Table 1 [12-24]. Several studies have
also explored the feasibility of deep learning in the
prognostication of HCC (Table 2) [25-30]. Notably, some
researchers have combined deep learning and radiomic
approaches, known as deep learning radiomics. In this
approach, a convolutional neural network is used to extract
deep learning radiomic features, and subsequent feature
selection and modeling are conducted using the typical
radiomic approach.

Prediction of HCC Recurrence Following Ablation,
Resection, and Transplantation

Radiomics has been utilized to predict the recurrence
risk of HCC following potentially curative treatments, such
as radiofrequency ablation therapy [24,25], resection
[16,17,25,31,32], and liver transplantation [15]. Most
of these studies focused on patients with early or very
early-stage HCC. Ji et al. [16] developed preoperative
and postoperative nomograms incorporating CT-based
radiomic models to predict recurrence after surgical
resection of HCC. They demonstrated that the integration
of radiomic signatures improved nomogram performance,
resulting in high predictive performances of preoperative
and postoperative nomograms with C-indices of 0.78 and
0.82, respectively. Liu et al. [25] developed deep learning
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algorithms based on contrast-enhanced ultrasound (US),
and then created two different nomograms by incorporating
these algorithms and clinical variables to predict recurrence
following either radiofrequency ablation or surgical resection
in patients with a single HCC lesion measuring 3 cm or
smaller. Both nomograms were found to have good prediction
performance with C-indices of 0.73 and 0.74 in the internal
validation cohort. These nomograms may be valuable for
selecting the appropriate treatment for patients with HCC
who are eligible for both radiofrequency ablation and
surgical resection, provided that the nomograms are further
validated to confirm their generalizability.

Prediction of Therapeutic Response in Intermediate to
Advanced HCC

Several studies have previously explored the potential
value of radiomics in predicting the response to palliative
treatments such as trans-arterial chemoembolization [18,33],
immune checkpoint inhibitors (ICIs) [13,19,34], and multi-
kinase targeted therapy [12] in patients with intermediate
to advanced stage HCC. It was demonstrated that radiomics
enables the identification of HCCs with high immune cell
infiltration [35] and those expressing the programmed cell
death-ligand 1 or 2 [19,34], which may correlate with the
response to ICI therapy. However, no study has investigated
whether radiomic models can predict the response to
ICT treatment, indicating a need for further research in
this area. A recent study by Bo et al. [12] explored the
feasibility of a radiomic model in predicting the response to
lenvatinib monotherapy in patients with unresectable HCC.
In this study, unsupervised clustering analysis revealed the
presence of two distinct subtypes of HCC based on radiomic
features, which demonstrated markedly different response
rates to lenvatinib monotherapy [12]. This finding suggests
that tumor phenotype assessment based on radiomics may
play a crucial role in personalizing treatment strategies
for HCC, although further research is required to validate
these findings. Zhang et al. [28] developed a deep learning
radiomics model for predicting survival of patients with
HCC after trans-arterial chemoembolization plus sorafenib
treatment using contrast-enhanced CT images. Notably,
in this study, a convolutional neural network was used to
extract the deep learning radiomic features, and subsequent
modeling was performed using penalized regression.
The final nomogram integrating the deep learning
radiomic signature and clinical data demonstrated good
discrimination performance with a C-index of 0.739.
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Artificial Intelligence for HCC Prognostication

Prediction of MVI

MVI is a critical prognostic factor linked to early
recurrence of HCC following surgery and local ablation
therapy [36,37]. Several studies have explored the use
of radiomics [21,22,38-40] and deep learning [26,29,30]
for predicting MVI in HCC, most of which developed
prediction models by integrating Al algorithms as well
as clinical, laboratory, and radiologic data. Among these
studies, a recent multi-institutional study conducted by
Xia et al. [21] reported high performance of the radiomic
and hybrid models, with areas under the curve (AUCs)
of 0.72 and 0.84, respectively. Furthermore, the models’
prediction of MVI presence was found to be associated
with poor overall and recurrence-free survival. Additionally,
gene expression analysis conducted in this study revealed
that MVI-associated differentially expressed genes were
commonly involved in glucose metabolism [21]. Song et
al. [26] developed both deep learning and radiomic models
using MRI, and showed that the performance of the deep
learning algorithm was superior to that of the radiomics
model (AUC of 0.915 vs. 0.731) in predicting MVI. However,
the performance of the models was evaluated only through
internal validation, thus leaving the generalizability of the
models unproven.

Prediction of Other Prognostic Pathologic Features
Radiomics has been applied for the prediction of the
prognostic histopathologic characteristics of HCC, such as
cytokeratin-19 expression [20], vessels encapsulating tumor
clusters [23], and macro-trabecular massive subtype [14].
Previous studies have demonstrated that the predictions of
the radiomic models can help in the accurate identification
of specific histopathologic characteristics and prognostic
stratification of patients [14,20,23]. These findings support
the hypothesis that radiologic tumor phenotypes reflect the
histopathologic and molecular features and, thereby, the
biologic behavior of tumors. However, considering that the
biologic behavior of HCC is influenced by a variety of factors,
the practical clinical relevance of these radiomic models that
focus on a single histopathologic factor remains uncertain.

Limitations and Future Directions

The radiomics approach has certain limitations, which
have hindered its application in daily clinical practice.
Radiomic analysis involves time-consuming and labor-
intensive processes such as segmentation and feature

kjronline.org https://doi.org/10.3348/kjr.2024.0070
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extraction. Recent advancements in deep learning for
automated segmentation of CT or MRI images could
facilitate the segmentation process. However, while
algorithms for organ segmentation have displayed high
performance [41,42], liver tumor segmentation using deep
learning remains challenging and has failed to demonstrate
satisfactory performance [10,43]. Another major concern is
the reliability of radiomic features. Radiomic features are
highly susceptible to variations stemming from differences
in scanners, imaging techniques, image reconstruction
algorithms, segmentation results, and methods for computing
these features, all of which can impact the reproducibility
of radiomic features and models [10,11,44]. To mitigate
this problem, the image biomarker standardization
initiative published consensus guidelines to standardize the
definitions of radiomic features and reporting methods [45].
Furthermore, algorithms to minimize variations in radiomic
features across different imaging protocols have also been
proposed [46,47]. Nonetheless, ensuring harmonization and
reproducibility in radiomics remains a formidable challenge
[10,11]. Moreover, replicating a radiomics model from a
research paper is extremely difficult, demanding identical
training imaging data, segmentation, and computational
methods as the original model. This highlights the need for
transparent and standardized reporting of methodology and
results in radiomics research. In order to assess the quality
of the radiomics studies, a radiomics quality score has been
proposed [48]. The radiomics quality score encompasses
key components of radiomics research that should be
clearly reported, including image protocol, methods

for segmentation, feature extraction, feature selection,
performance assessment, and public data sharing.

Existing research on radiomics for HCC prognostication has
predominantly focused on the outcomes following a single
treatment method, without comparing it to alternative
therapeutic options. A more practical approach is required,
which can assist in selecting the most suitable treatment
from various available therapeutic options. In addition, the
actual clinical impact of radiomics, for example, the survival
benefit obtained by radiomic-assisted treatment selection
needs to be addressed in future research.

Deep learning for HCC prognostication is considered to
be in an even earlier stage of development than radiomics.
All studies on deep learning for HCC prognosis preliminarily
focus on technical feasibility. The reported algorithms
require manual tumor segmentation and are not sufficiently
validated for clinical use. Significant progress is required
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for the integration of deep learning algorithms into clinical
practice for HCC prognostication. Given the current CT and
MRI examination protocols used for the assessment of HCC,
a practically applicable algorithm would require multiple
complicated functions, including automated liver and tumor
segmentation, co-registration of multiphasic or multi-
sequence images, and prognostic assessment. Despite the
limitations of deep learning algorithms as a standalone
method for HCC prognostication, they may be used to
facilitate radiomic analysis. This may involve the use of
convolutional neural networks for feature extraction and/or
selection, application of deep learning-based organ or tumor
segmentation to radiomic analysis, and deep learning-based
image conversion to improve the reproducibility of radiomic
features. This aspect of deep learning needs to be further
investigated.

Both radiomic models and deep learning algorithms
utilize various image-derived features and are susceptible
to the problem of overfitting. Therefore, rigorous clinical
validation, preferably through external validation and multi-
center data, is mandatory to prove their generalizability
in real-world clinical practice. Despite its potential, Al
for HCC prognostication is not yet applicable to daily
clinical practice due to certain limitations and insufficient
validation. The development of well-validated AI algorithms
that are suitable for daily clinical workflow and proof of
their actual clinical benefit are prerequisites for the clinical
adoption of AI for the management of patients with HCC.

CONCLUSION

Al, particularly radiomics, has emerged as a promising
tool for the image-based prognostication of HCC.
Radiomics has demonstrated strong potential in diverse
applications, including predicting MVI, assessing outcomes
after locoregional and systemic treatment, and identifying
unfavorable prognostic pathologic subtypes of HCC. However,
radiomics has not yet been adopted in clinical practice due
to some ongoing challenges, including its time-consuming
nature and issues with reproducibility. Future studies should
aim to streamline and standardize the radiomics process,
thus reducing the hurdles for clinical integration. Most
studies investigating deep learning for HCC prognosis are
considered preliminary, with a focus on technical feasibility.
For radiomics and deep learning to be applied in clinical
practice, they must be incorporated seamlessly into the
daily workflow. The development of well-constructed,
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accessible, and efficient AI algorithms, validated through
rigorous clinical trials, will be pivotal for achieving this
goal in the future.
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