• Title/Summary/Keyword: Deep Features

Search Result 1,096, Processing Time 0.023 seconds

Development of a Deep Learning Model for Detecting Fake Reviews Using Author Linguistic Features (작성자 언어적 특성 기반 가짜 리뷰 탐지 딥러닝 모델 개발)

  • Shin, Dong Hoon;Shin, Woo Sik;Kim, Hee Woong
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.01-23
    • /
    • 2022
  • Purpose This study aims to propose a deep learning-based fake review detection model by combining authors' linguistic features and semantic information of reviews. Design/methodology/approach This study used 358,071 review data of Yelp to develop fake review detection model. We employed linguistic inquiry and word count (LIWC) to extract 24 linguistic features of authors. Then we used deep learning architectures such as multilayer perceptron(MLP), long short-term memory(LSTM) and transformer to learn linguistic features and semantic features for fake review detection. Findings The results of our study show that detection models using both linguistic and semantic features outperformed other models using single type of features. In addition, this study confirmed that differences in linguistic features between fake reviewer and authentic reviewer are significant. That is, we found that linguistic features complement semantic information of reviews and further enhance predictive power of fake detection model.

Compressed Ensemble of Deep Convolutional Neural Networks with Global and Local Facial Features for Improved Face Recognition (얼굴인식 성능 향상을 위한 얼굴 전역 및 지역 특징 기반 앙상블 압축 심층합성곱신경망 모델 제안)

  • Yoon, Kyung Shin;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.1019-1029
    • /
    • 2020
  • In this paper, we propose a novel knowledge distillation algorithm to create an compressed deep ensemble network coupled with the combined use of local and global features of face images. In order to transfer the capability of high-level recognition performances of the ensemble deep networks to a single deep network, the probability for class prediction, which is the softmax output of the ensemble network, is used as soft target for training a single deep network. By applying the knowledge distillation algorithm, the local feature informations obtained by training the deep ensemble network using facial subregions of the face image as input are transmitted to a single deep network to create a so-called compressed ensemble DCNN. The experimental results demonstrate that our proposed compressed ensemble deep network can maintain the recognition performance of the complex ensemble deep networks and is superior to the recognition performance of a single deep network. In addition, our proposed method can significantly reduce the storage(memory) space and execution time, compared to the conventional ensemble deep networks developed for face recognition.

Deep Learning Method for Identification and Selection of Relevant Features

  • Vejendla Lakshman
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.212-216
    • /
    • 2024
  • Feature Selection have turned into the main point of investigations particularly in bioinformatics where there are numerous applications. Deep learning technique is a useful asset to choose features, anyway not all calculations are on an equivalent balance with regards to selection of relevant features. To be sure, numerous techniques have been proposed to select multiple features using deep learning techniques. Because of the deep learning, neural systems have profited a gigantic top recovery in the previous couple of years. Anyway neural systems are blackbox models and not many endeavors have been made so as to examine the fundamental procedure. In this proposed work a new calculations so as to do feature selection with deep learning systems is introduced. To evaluate our outcomes, we create relapse and grouping issues which enable us to think about every calculation on various fronts: exhibitions, calculation time and limitations. The outcomes acquired are truly encouraging since we figure out how to accomplish our objective by outperforming irregular backwoods exhibitions for each situation. The results prove that the proposed method exhibits better performance than the traditional methods.

Deep Learning-Based Brain Tumor Classification in MRI images using Ensemble of Deep Features

  • Kang, Jaeyong;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.37-44
    • /
    • 2021
  • Automatic classification of brain MRI images play an important role in early diagnosis of brain tumors. In this work, we present a deep learning-based brain tumor classification model in MRI images using ensemble of deep features. In our proposed framework, three different deep features from brain MR image are extracted using three different pre-trained models. After that, the extracted deep features are fed to the classification module. In the classification module, the three different deep features are first fed into the fully-connected layers individually to reduce the dimension of the features. After that, the output features from the fully-connected layers are concatenated and fed into the fully-connected layer to predict the final output. To evaluate our proposed model, we use openly accessible brain MRI dataset from web. Experimental results show that our proposed model outperforms other machine learning-based models.

Wine Quality Classification with Multilayer Perceptron

  • Agrawal, Garima;Kang, Dae-Ki
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.25-30
    • /
    • 2018
  • This paper is about wine quality classification with multilayer perceptron using the deep neural network. Wine complexity is an issue when predicting the quality. And the deep neural network is considered when using complex dataset. Wine Producers always aim high to get the highest possible quality. They are working on how to achieve the best results with minimum cost and efforts. Deep learning is the possible solution for them. It can help them to understand the pattern and predictions. Although there have been past researchers, which shows how artificial neural network or data mining can be used with different techniques, in this paper, rather not focusing on various techniques, we evaluate how a deep learning model predicts for the quality using two different activation functions. It will help wine producers to decide, how to lead their business with deep learning. Prediction performance could change tremendously with different models and techniques used. There are many factors, which, impact the quality of the wine. Therefore, it is a good idea to use best features for prediction. However, it could also be a good idea to test this dataset without separating these features. It means we use all features so that the system can consider all the feature. In the experiment, due to the limited data set and limited features provided, it was not possible for a system to choose the effective features.

Facial Local Region Based Deep Convolutional Neural Networks for Automated Face Recognition (자동 얼굴인식을 위한 얼굴 지역 영역 기반 다중 심층 합성곱 신경망 시스템)

  • Kim, Kyeong-Tae;Choi, Jae-Young
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.47-55
    • /
    • 2018
  • In this paper, we propose a novel face recognition(FR) method that takes advantage of combining weighted deep local features extracted from multiple Deep Convolutional Neural Networks(DCNNs) learned with a set of facial local regions. In the proposed method, the so-called weighed deep local features are generated from multiple DCNNs each trained with a particular face local region and the corresponding weight represents the importance of local region in terms of improving FR performance. Our weighted deep local features are applied to Joint Bayesian metric learning in conjunction with Nearest Neighbor(NN) Classifier for the purpose of FR. Systematic and comparative experiments show that our proposed method is robust to variations in pose, illumination, and expression. Also, experimental results demonstrate that our method is feasible for improving face recognition performance.

Speech emotion recognition based on genetic algorithm-decision tree fusion of deep and acoustic features

  • Sun, Linhui;Li, Qiu;Fu, Sheng;Li, Pingan
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.462-475
    • /
    • 2022
  • Although researchers have proposed numerous techniques for speech emotion recognition, its performance remains unsatisfactory in many application scenarios. In this study, we propose a speech emotion recognition model based on a genetic algorithm (GA)-decision tree (DT) fusion of deep and acoustic features. To more comprehensively express speech emotional information, first, frame-level deep and acoustic features are extracted from a speech signal. Next, five kinds of statistic variables of these features are calculated to obtain utterance-level features. The Fisher feature selection criterion is employed to select high-performance features, removing redundant information. In the feature fusion stage, the GA is is used to adaptively search for the best feature fusion weight. Finally, using the fused feature, the proposed speech emotion recognition model based on a DT support vector machine model is realized. Experimental results on the Berlin speech emotion database and the Chinese emotion speech database indicate that the proposed model outperforms an average weight fusion method.

DeepAct: A Deep Neural Network Model for Activity Detection in Untrimmed Videos

  • Song, Yeongtaek;Kim, Incheol
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.150-161
    • /
    • 2018
  • We propose a novel deep neural network model for detecting human activities in untrimmed videos. The process of human activity detection in a video involves two steps: a step to extract features that are effective in recognizing human activities in a long untrimmed video, followed by a step to detect human activities from those extracted features. To extract the rich features from video segments that could express unique patterns for each activity, we employ two different convolutional neural network models, C3D and I-ResNet. For detecting human activities from the sequence of extracted feature vectors, we use BLSTM, a bi-directional recurrent neural network model. By conducting experiments with ActivityNet 200, a large-scale benchmark dataset, we show the high performance of the proposed DeepAct model.

Feature Extraction Based on DBN-SVM for Tone Recognition

  • Chao, Hao;Song, Cheng;Lu, Bao-Yun;Liu, Yong-Li
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.91-99
    • /
    • 2019
  • An innovative tone modeling framework based on deep neural networks in tone recognition was proposed in this paper. In the framework, both the prosodic features and the articulatory features were firstly extracted as the raw input data. Then, a 5-layer-deep deep belief network was presented to obtain high-level tone features. Finally, support vector machine was trained to recognize tones. The 863-data corpus had been applied in experiments, and the results show that the proposed method helped improve the recognition accuracy significantly for all tone patterns. Meanwhile, the average tone recognition rate reached 83.03%, which is 8.61% higher than that of the original method.

Privacy-Preserving Deep Learning using Collaborative Learning of Neural Network Model

  • Hye-Kyeong Ko
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.56-66
    • /
    • 2023
  • The goal of deep learning is to extract complex features from multidimensional data use the features to create models that connect input and output. Deep learning is a process of learning nonlinear features and functions from complex data, and the user data that is employed to train deep learning models has become the focus of privacy concerns. Companies that collect user's sensitive personal information, such as users' images and voices, own this data for indefinite period of times. Users cannot delete their personal information, and they cannot limit the purposes for which the data is used. The study has designed a deep learning method that employs privacy protection technology that uses distributed collaborative learning so that multiple participants can use neural network models collaboratively without sharing the input datasets. To prevent direct leaks of personal information, participants are not shown the training datasets during the model training process, unlike traditional deep learning so that the personal information in the data can be protected. The study used a method that can selectively share subsets via an optimization algorithm that is based on modified distributed stochastic gradient descent, and the result showed that it was possible to learn with improved learning accuracy while protecting personal information.