• Title/Summary/Keyword: Deep Excavations

Search Result 55, Processing Time 0.033 seconds

Safety Effect Evaluation of Existing Metro Tunnel by Deep Urban Tunnelling (대심도 도심지 터널시공에 의한 기존 지하철 터널 안전영향 평가)

  • Han, Sang-Min;Lee, Dong-Hyuk;Lee, Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.9
    • /
    • pp.37-50
    • /
    • 2021
  • Recently, due to the expansion of urban infrastructure using underground spaces in urban areas, many adjacent constructions and excavations have been made carried out between existing facilities, and complaints related to the stability of existing facilities due to close construction have become significant issues. In this study, it was closely reviewed for the existing metro tunnel structure in the new Dongbuk urban metro railway to determine the behavioral characteristics of tunnel structure according to adjacent tunnel construction. Also, it was analysed the evaluation of the safety zone and excavation method for metro tunnel structure. And after a detailed damage assessment, track irregularities and structural calculation by using a numerical analysis, stability of the metro tunnel structure according to nearby tunnel excavation was evaluated to be secured for safety. This study is expected to be applied as practical reference to review the evaluation of safety effects of existing tunnel structure and buildings according to adjacent construction in complex deep urban tunnelling.

Effects of Strut Preloading on the Restraining of Adjacent Ground Displacement at Braced Excavations (버팀 굴착시 버팀대 선행하중의 인접지반 변위 억제 효과)

  • 백규호;조현태
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.31-40
    • /
    • 1999
  • The bracing system using screw jack is not effective for the restraining of adjacent ground displacement. since the screw jack dose not induce sufficient preloading on struts. In order to protect excessive displacement of adjacent ground at braced excavation, new preloading jack was developed in the country. In this paper, the new preloading jack and the measurement results of the lateral displacement of braced wall at three deep excavation sites in Seoul city are introduced. The measurement results showed that the maximum displacements of braced wall are smaller than 0.15% of excavation depth, therefore the wall displacements can be minimized by preloading which is acted on bracing. If the bracing system with new preloading jack is used in braced excavation, it is effective for reducing the cost and period of construction.

  • PDF

The Fluid Loss and Sealing Mechanisms in Slurry Trench Condition (I) : A Large Scale Test and Design Procedure (Slurry wall 공법에서 안정액의 역할 (I) : 대형모형실험과 설계절차)

  • Kim, Hak-Moon
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.239-248
    • /
    • 2002
  • Bentonite slurries in a slurry wall construction must fulfill a stabilizing function by forming impermeable membrane (surface cake and penetrated cake) on the excavated soil faces. Thus problems are occurring in practice for the construction of diaphram walls and cut-off walls with a low permeability for wastes disposal areas in some deep excavations or different grounds. In this paper, the fundamental mechanics of fluid loss and filter cake formation in various soil beds are investigated using large scale laboratory apparatus. The sealing efficiency of filter cake from the large scale tests and the significance of fluid loss in a slurry trench are utilized for practical situation as a recommended design procedure.

2D and 3D numerical analysis on strut responses due to one-strut failure

  • Zhang, Wengang;Zhang, Runhong;Fu, Yinrong;Goh, A.T.C.;Zhang, Fan
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.965-972
    • /
    • 2018
  • In deep braced excavations, struts and walers play an essential role in the whole supporting system. For multi-level strut systems, accidental strut failure is possible. Once a single strut fails, it is possible for the loads carried from the previous failed strut to be transferred to the adjacent struts and therefore cause one or more struts to fail. Consequently, progressive collapse may occur and cause the whole excavation system to fail. One of the reasons for the Nicoll Highway Collapse was attributed to the failure of the struts and walers. Consequently, for the design of braced excavation systems in Singapore, one of the requirements by the building authorities is to perform one-strut failure analyses, in order to ensure that there is no progressive collapse when one strut was damaged due to a construction accident. Therefore, plane strain 2D and three-dimensional (3D) finite element analyses of one-strut failure of the braced excavation system were carried out in this study to investigate the effects of one-strut failure on the adjacent struts.

A Study on the Rapid Construction Method for Ground Excavation (지반굴착을 위한 급속시공 방안 연구)

  • Sim, Jae-Uk;Son, Sung-Gon;An, Hyung-Jun;Kim, In-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1251-1258
    • /
    • 2008
  • The purpose of this research is to introduce the new temporary earth retaining wall system using landslide stabilizing piles. This system is a self-supported retaining wall(SSR) without installing supports such as tiebacks, struts and rakers. The SSR is a kind of gravity structures consisting of twin parallel lines of piles driven below dredge level, tied together at head of soldier piles and landslide stabilizing piles by beams. There are three types of excavation wall structures: standard method for medium retained heights(<8.0m), internal excavation method and slope excavation method for deep-excavation applications(>8.0m). In the present study, the measured data from seven different sites which the SSR was used for excavation were collected and analyzed to investigate the characteristic behavior lateral wall movements associated with urban excavations in Korea.

  • PDF

MARS inverse analysis of soil and wall properties for braced excavations in clays

  • Zhang, Wengang;Zhang, Runhong;Goh, Anthony. T.C.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.577-588
    • /
    • 2018
  • A major concern in deep excavation project in soft clay deposits is the potential for adjacent buildings to be damaged as a result of the associated excessive ground movements. In order to accurately determine the wall deflections using a numerical procedure such as the finite element method, it is critical to use the correct soil parameters such as the stiffness/strength properties. This can be carried out by performing an inverse analysis using the measured wall deflections. This paper firstly presents the results of extensive plane strain finite element analyses of braced diaphragm walls to examine the influence of various parameters such as the excavation geometry, soil properties and wall stiffness on the wall deflections. Based on these results, a multivariate adaptive regression splines (MARS) model was developed for inverse parameter identification of the soil relative stiffness ratio. A second MARS model was also developed for inverse parameter estimation of the wall system stiffness, to enable designers to determine the appropriate wall size during the preliminary design phase. Soil relative stiffness ratios and system stiffness values derived via these two different MARS models were found to compare favourably with a number of field and published records.

Development of Real Time Monitoring Program Using Geostatistics and GIS (GIS 및 지구통계학을 이용한 실시간 통합계측관리 프로그램 개발)

  • Han, Byung-Won;Park, Jae-Sung;Lee, Dae-Hyung;Lee, Gye-Choon;Kim, Sung-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1046-1053
    • /
    • 2006
  • In the large scale recent reclaiming works performed within the wide spatial boundary, evaluation of long-term consolidation settlement and residual settlement of the whole construction area is sometimes made with the results of the limited ground investigation and measurement. Then the reliability of evaluation has limitations due to the spatial uncertainty. Additionally, in case of large scale deep excavation works such as urban subway construction, there are a lot of hazardous elements to threaten the safety of underground pipes or adjacent structures. Therefore it is necessary to introduce a damage prediction system of adjacent structures and others. For the more accurate analysis of monitoring information in the wide spatial boundary works and large scale urban deep excavations, it is necessary to perform statistical and spatial analysis considering the geographical spatial effect of ground and monitoring information in stead of using diagrammatization method based on a time-series data expression that is traditionally used. And also it is necessary that enormous ground information and measurement data, digital maps are accumulated in a database, and they are controlled in a integrating system. On the abovementioned point of view, we developed Geomonitor 2.0, an Internet based real time monitoring program with a new concept by adding GIS and geo-statistical analysis method to the existing real time integrated measurement system that is already developed and under useful use. The new program enables the spatial analysis and database of monitoring data and ground information, and helps the construction- related persons make a quick and accurate decision for the economical and safe construction.

  • PDF

A study on the selection of optimal cross section according to the ventilation system in TBM road tunnels (TBM 도로터널의 환기방식에 따른 최적단면 선정에 관한 연구)

  • Lee, Ho-Keun;Kang, Hyun-Wook;Kim, Hyun-Soo;Kim, Hong-Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.135-148
    • /
    • 2013
  • Recently, road tunnels have become longer and the plans for long and deep road tunnel have been underway in urban areas. These long and deep tunnel excavations include NATM and TBM. Shield TBM is applied to around 80% of traffic tunnels in Europe, and approximately 30% of them in other developed countries. However, as much of equipment is imported from foreign countries at high prices and distribution rate of TBM tunnel is considerably low in Korea, NATM excavation method is commonly used. To increase TBM tunnel, it is necessary to do assure economic feasibility with the supply-demand of TBM equipment. For this, the selection of standardized TBM diameter is urgently needed. Therefore, the study aims to estimate the standardized optimum section properties of TBM by examining TBM excavation cross section utilization depending on the volume of traffic, the number of lane and its cross-section type(single or double deck), and ventilation system.

Derivation of Flexural Rigidity Formula for Two-row Overlap Pile Wall (2열 겹침주열말뚝의 휨 강성 산정식 유도)

  • Choi, Wonhyuk;Kim, Bumjoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.109-118
    • /
    • 2018
  • Two-row overlap pile wall, currently under development for use in deep excavations, is a novel retaining structure designed to perform itself as a cutoff wall as well as a high-stiffness wall by constructing four overlapping piles arranged in zigzag manner at a time using a tetra-axis auger. This wall has a relatively complex cross-section, compared with other types of pile wall, which would make it difficult to determine design parameters related to cross-section. In this study, a flexural rigidity equation has been derived by analyzing both theoretically and statistically various wall cross-sections with different pile diameters and overlap lengths. The flexural rigidity equation was found to show the maximum error rate of 3%.

Displacement Comparison of a Braced Retaining Wall by Elasto-Plastic Analysis Program (탄소성 해석프로그램에 의한 버팀지지 흙막이벽의 변위 비교)

  • 신방웅;김상수;오세욱;김동신
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.395-402
    • /
    • 2000
  • Recently, the deep excavations have been peformed to utilize the under ground space. As the ground excavation is deeper, the damage of the adjacent structure and the ground occurs frequently. The analysis of the retaining structures is necessary to the safety of the excavation works. There are many methods such as elasto-plastic, FEM, and FDM to analyze the displacement of the retaining structure. The elasto-plastic method is generally used in practice. In this thesis, GEBA-1 program by the Nakamura-Nakajawa elasto-plastic method was developed. The program for Windows was used the Visual Basic 6.0, and the Main of the program consists of three subroutines, SUB1, SUB2, and SUB3. The lateral displacement of the wall was analyzed by the developed program GEBA-1, SUNEX, and EXCAD, and compared with the measured displacement by the Inclinometer(at three excavation work sites). The excavation method of each site is braced retaining wall using H-pile. Each excavation depth is 14m, 14m, or 8.2m. The results of the analyses are the followings ① In the multi-layer soil, the lateral displacement by the GEBA-1 and EXCAD which is considering the distribution of the strut load is equal to the measured displacement. Elasto-plasto programs can't consider the change of the ground water in clay. Therefore, the analysis displacement was expected only 20% of the measured wall displacement. ③ At the final excavation step, the maximum lateral displacement of analysis and field occurred 7∼18m at the 85∼92% of the excavation depth. ④ The maximum lateral displacement in clay, as 50mm, occurred on the ground surface.

  • PDF