• Title/Summary/Keyword: Deep Drawing. Forging

Search Result 16, Processing Time 0.02 seconds

Mechanical Pressure Drive with Enhanced Downward Velocity Characteristics (슬라이드의 하강속도특성을 개선한 기계프레스의 구동부)

  • 구형욱;최호준;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.110-120
    • /
    • 1996
  • A crank-slider mechanism is driven by the rotating disk with are crank-pin guide to be applied to the deep drawing and cold forging presses. Load characteristics for different presses are summarized to see the basics of deep drawing of sheet metal and forging in terms of load-stroke relationship. Several types of conventional deep drawing presses are also shown to be compared with the ratating disk-types press. Kinematic performances by thearc guide driving mechanism are anlayzed in terms of load capaicty, stroke, and slide velocity characteristics, and they are compared with those by conventional driving , e.g. Niagara-typepress and so on. Kinematically better performances is shown by arc guide drive than those by conventional ones. The new driving mechanism is also proven to be one of the best for mass production press in terms of short cycle time. Possible applications of the arc guide press to deep drawing and cold forging work are in terms of kinematics and load capacity.

  • PDF

Development of Integrated Computer-Aided Process Planning System for Press Working Products (프레스 제품의 가공을 위한 통합적 CAPP 시스템 개발)

  • Choi, Jung-Il;Kim, Chang-Bong;Kim, Chul;Kim, Byung-Min;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.59-70
    • /
    • 1999
  • This paper deals with automated computer-aided process planning by which designers can determine operation sequences even if they have little experience in the design of press working products. The computer-aided process planning in hot forging, deep drawing and blanking requires many kinds of technical and empirical skills based on investigation and collection of the knowledge of their processes. An approach to the CAPP system is based on the knowledge-based rules and the process knowledge base consisting of process planning rules is built. The methodology adopted to develop the system is elaborated in this paper. This system has been written in AutoLISP on the AutoCAD with a personal computer and provides powerful capabilities for process planning of hot forging, cold forging, deep drawing and blanking products.

  • PDF

Combination of Deep Drawing and Forging Process for Forming Drum Shape Product Having Thickness Variation (두께 분포를 갖는 드럼 형상 제품의 성형을 위한 Deep Drawing과 단조 공정의 조합)

  • Cha D. J.;Kim S. S.;Byun W. Y.;Kang S. W.;Kim E. Z.;Park H. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.439-443
    • /
    • 2005
  • Deep drawing and cold forging processes are combined to achieve near net shape forming of automotive part which has not only drum shape but also thickness variation. It is important to find out proper intermediate shape where two totally different forming methods should be joined seamlessly. In the course of development of the combined process, finite element analysis can be utilized effectively to decide optimal position for transferring from the sheet metal work to the bulk forming. Because machining process is eliminated, significant improvement in integrity, reliability, and durability of the part is expected. The developed process combination could be applied in real manufacturing process successfully.

Combination of deep drawing and forging process for forming drum-shaped-product to have thickness variation (두께 분포를 갖는 드럼 형상 제품의 성형을 위한 deep drawing과 단조 공정의 조합)

  • Cha D. J.;Kim S. S.;Byun W. Y.;Kang S. W.;Kim E. Z.;Park H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.342-345
    • /
    • 2004
  • A combination of deep drawing and cold forging process is tried to achieve near net shaping of automatic transmission part which has drum shape and thickness variation. It is key for successful shaping of the part to find out proper condition to combine two different forming methods. Finite element analysis can be utilized for that purpose effectively. Integrity, reliability, and durability of the part are improved by eliminating machining process. The developed process is applied in real manufacturing process successfully.

  • PDF

Application of FEM to the Forming Process of Disk-Brake Piston (유한요소법을 이용한 disk-brake piston의 공정설계)

  • 황병복;이호용
    • Transactions of Materials Processing
    • /
    • v.3 no.2
    • /
    • pp.178-188
    • /
    • 1994
  • A design methodology is applied for manufacturing a disk-brake piston component. The design criteria are the limit drawing ratio and the forging load within the available press limit. Also, the final product should not have any geometrical defect. The rigid-plastic FEM has been applied to simulate the conventional four stage manufacturing processes, which include deep drawing and forging process. Simulation of one stage process from a selected stock to the final product shape is performed for generating information on additional requirements for metal flow. Two stage forming processes with different punch corner and nose geometries are also simulated to identify the possible best solutions. Finally, the best manufacturing process is selected, which is using a hemispherical punch int he deep drawing process.

  • PDF

A Study on the Process Sequence Design in Metal Forming including Deep Drawing (디프드로잉이 포함된 소성가공의 공정설계에 관한 연구)

  • 황병복;임중연;이호용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.107-117
    • /
    • 1994
  • A design methodology is applied for manufacturing a disk-brake piston component and a washing machine container. The design criteria are the limit drawing ratio and the forging load within the available press limit. Also, the final product should not have any geometrical defect. The rigid-plastic and elastic-plastic FEM have been applied to simulate both of the conventional manufacturing processes, respectively, which include deep drawing and forging process. Simulations of one stage process from a selected stock to the final product shape are performed for generating information on additional requirements for metal flow. The best manufacturing processes are selected, which is using a hemispherical punch in the deep drawing process for both disk-brake piston component and washing machine container.

  • PDF

A Study on the Development of Deep Drawing Press using a Rotating Disk (회전원판을 이용한 디프드로잉용 프레스 개발에 관한 연구)

  • 황병복;강성호;김진목
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.69-78
    • /
    • 1994
  • A rotating disk is introduced to be applied to the deep drawing press. Several characteristics are summarized to see the basics of deep drawing of sheet metal in terms of load-stroke relationship and formability. Many conventional drawing presses, which are mostly link-type presses, are also shown to be compared with the rotating disk-type press. Performances of the new press are kinematically analyzed it terms of load-main gear angle relationship, stroke-gear angle relationship, and slide velocity-gear angle relationship and they are compared with those of conventional types', e. g. crank press and so on. The comparison show kinematically better performance of rotating disk-type press than that of conventional ones. Also, the new press are proven to be one of the best press for mass production in terms of cycle time. Applicability of the rotating disk press to deep drawing and cold forging work is introduced. The new press is described in terms of economy such that the cost of new press would be much lower than those of conventional types'.

Die design system for deep drawing and ironing of high pressure gas cylinder

  • Yoon Ji-Hun;Choi Young;Park Yoon-So
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.31-36
    • /
    • 2005
  • This paper describes a research work on the die design for the deep drawing & ironing(D. D. I) of high pressure gas cylinder. D. D. I die set is large-sized die used in horizontal press, which is usually composed of a drawing, and an ironing die. Design method of D. D. I die set is very different from that of conventional cold forging die set. Outer diameter of the die set is fixed because of press specification and that of the insert should be as small as possible for saving material cost. In this study, D. D. I die set has been designed to consider those characteristics, and the feasibility of the designed die has been verified by FE-analysis. In addition, the automated system of die design has been developed in AutoCAD R14 by formulating the applied methods to the regular rules.

산업부문 B2B 시범사업 소개 - 금형업종 -

  • 류병우
    • Proceedings of the CALSEC Conference
    • /
    • 2001.08a
    • /
    • pp.105-109
    • /
    • 2001
  • 성형의 종류 ◈금속 성형 ㆍ 스탬핑(Stamping) ㆍ 정밀 블랭킹(Fine Blanking) ㆍ 딥 드로잉(Deep Drawing) ㆍ 다이캐스팅(Die Casting) ㆍ 인베스트먼트 주조(Investment Casting) ㆍ 분말 야금(Power Metallurgy) ㆍ 인발(Wire Drawing) ㆍ 압출(Extrusion) ㆍ 단조(Forging) ㆍ ㆍ코이닝(Coining) ㆍ... ◈비금속 성형 ㆍ 사출(Injection) ㆍ 압축(Compression) ㆍ 블로우 성형(Blow Molding) ㆍ 진공 성형(Vacuum Molding) ㆍ 발포 성형(Foam Molding) ㆍ 피복(Encapsulation) ㆍ 회전식(Rotational) ㆍ 주조(Casting) ㆍ 적층(Laminating) ㆍ 압출(Extrusion) ㆍ...(중략)

  • PDF

Process and Die Design of Square Cup Drawing for Wall Thickening (사각형 판재성형 시 벽두께 증육을 위한 금형 및 공정 설계)

  • Kim, Jinho;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5789-5794
    • /
    • 2015
  • Recently, thin and light-weight production technologies are needed in IT industry in accordance with increase of the smart phones and mobile PC products. In order to make light and high rigidity products, engineering plastic and aluminum materials are frequently used in products appearance and frame hat support structure. Especially aluminum extrusion and CNC Brick processes are widely used for high strength and high rigidity technology. But extrusion method has constraints to apply exterior design and CNC Brick process has relatively high production cost and low speed of manufacturing. In this research, a new process method is introduced in order to reduce material cost and to improve manufacturing speed dramatically. Plate forging process means basically that thickening of local wall area thickness after deform exterior shape by deep drawing and bending process. Therefore, it is possible to minimize the waste of material and the manufacturing time. In this study the process of plate forging is designed using finite element program AFDEX-2D and the thickness and the width of initial deformed blank. And it is verified as a sample which is a part of laptop developed through the proposed plate forging method.