• Title/Summary/Keyword: Deep CNNs

Search Result 82, Processing Time 0.021 seconds

Text Categorization with Improved Deep Learning Methods

  • Wang, Xingfeng;Kim, Hee-Cheol
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.106-113
    • /
    • 2018
  • Although deep learning methods of convolutional neural networks (CNNs) and long-/short-term memory (LSTM) are widely used for text categorization, they still have certain shortcomings. CNNs require that the text retain some order, that the pooling lengths be identical, and that collateral analysis is impossible; In case of LSTM, it requires the unidirectional operation and the inputs/outputs are very complex. Against these problems, we thus improved these traditional deep learning methods in the following ways: We created collateral CNNs accepting disorder and variable-length pooling, and we removed the input/output gates when creating bidirectional LSTMs. We have used four benchmark datasets for topic and sentiment classification using the new methods that we propose. The best results were obtained by combining LTSM regional embeddings with data convolution. Our method is better than all previous methods (including deep learning methods) in terms of topic and sentiment classification.

Sparse Feature Convolutional Neural Network with Cluster Max Extraction for Fast Object Classification

  • Kim, Sung Hee;Pae, Dong Sung;Kang, Tae-Koo;Kim, Dong W.;Lim, Myo Taeg
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2468-2478
    • /
    • 2018
  • We propose the Sparse Feature Convolutional Neural Network (SFCNN) to reduce the volume of convolutional neural networks (CNNs). Despite the superior classification performance of CNNs, their enormous network volume requires high computational cost and long processing time, making real-time applications such as online-training difficult. We propose an advanced network that reduces the volume of conventional CNNs by producing a region-based sparse feature map. To produce the sparse feature map, two complementary region-based value extraction methods, cluster max extraction and local value extraction, are proposed. Cluster max is selected as the main function based on experimental results. To evaluate SFCNN, we conduct an experiment with two conventional CNNs. The network trains 59 times faster and tests 81 times faster than the VGG network, with a 1.2% loss of accuracy in multi-class classification using the Caltech101 dataset. In vehicle classification using the GTI Vehicle Image Database, the network trains 88 times faster and tests 94 times faster than the conventional CNNs, with a 0.1% loss of accuracy.

Text Classification Using Parallel Word-level and Character-level Embeddings in Convolutional Neural Networks

  • Geonu Kim;Jungyeon Jang;Juwon Lee;Kitae Kim;Woonyoung Yeo;Jong Woo Kim
    • Asia pacific journal of information systems
    • /
    • v.29 no.4
    • /
    • pp.771-788
    • /
    • 2019
  • Deep learning techniques such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) show superior performance in text classification than traditional approaches such as Support Vector Machines (SVMs) and Naïve Bayesian approaches. When using CNNs for text classification tasks, word embedding or character embedding is a step to transform words or characters to fixed size vectors before feeding them into convolutional layers. In this paper, we propose a parallel word-level and character-level embedding approach in CNNs for text classification. The proposed approach can capture word-level and character-level patterns concurrently in CNNs. To show the usefulness of proposed approach, we perform experiments with two English and three Korean text datasets. The experimental results show that character-level embedding works better in Korean and word-level embedding performs well in English. Also the experimental results reveal that the proposed approach provides better performance than traditional CNNs with word-level embedding or character-level embedding in both Korean and English documents. From more detail investigation, we find that the proposed approach tends to perform better when there is relatively small amount of data comparing to the traditional embedding approaches.

Efficient Large Dataset Construction using Image Smoothing and Image Size Reduction

  • Jaemin HWANG;Sac LEE;Hyunwoo LEE;Seyun PARK;Jiyoung LIM
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.1
    • /
    • pp.17-24
    • /
    • 2023
  • With the continuous growth in the amount of data collected and analyzed, deep learning has become increasingly popular for extracting meaningful insights from various fields. However, hardware limitations pose a challenge for achieving meaningful results with limited data. To address this challenge, this paper proposes an algorithm that leverages the characteristics of convolutional neural networks (CNNs) to reduce the size of image datasets by 20% through smoothing and shrinking the size of images using color elements. The proposed algorithm reduces the learning time and, as a result, the computational load on hardware. The experiments conducted in this study show that the proposed method achieves effective learning with similar or slightly higher accuracy than the original dataset while reducing computational and time costs. This color-centric dataset construction method using image smoothing techniques can lead to more efficient learning on CNNs. This method can be applied in various applications, such as image classification and recognition, and can contribute to more efficient and cost-effective deep learning. This paper presents a promising approach to reducing the computational load and time costs associated with deep learning and provides meaningful results with limited data, enabling them to apply deep learning to a broader range of applications.

Recent Trends of Weakly-supervised Deep Learning for Monocular 3D Reconstruction (단일 영상 기반 3차원 복원을 위한 약교사 인공지능 기술 동향)

  • Kim, Seungryong
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.70-78
    • /
    • 2021
  • Estimating 3D information from a single image is one of the essential problems in numerous applications. Since a 2D image inherently might originate from an infinite number of different 3D scenes, thus 3D reconstruction from a single image is notoriously challenging. This challenge has been overcame by the advent of recent deep convolutional neural networks (CNNs), by modeling the mapping function between 2D image and 3D information. However, to train such deep CNNs, a massive training data is demanded, but such data is difficult to achieve or even impossible to build. Recent trends thus aim to present deep learning techniques that can be trained in a weakly-supervised manner, with a meta-data without relying on the ground-truth depth data. In this article, we introduce recent developments of weakly-supervised deep learning technique, especially categorized as scene 3D reconstruction and object 3D reconstruction, and discuss limitations and further directions.

Deep learning-based apical lesion segmentation from panoramic radiographs

  • Il-Seok, Song;Hak-Kyun, Shin;Ju-Hee, Kang;Jo-Eun, Kim;Kyung-Hoe, Huh;Won-Jin, Yi;Sam-Sun, Lee;Min-Suk, Heo
    • Imaging Science in Dentistry
    • /
    • v.52 no.4
    • /
    • pp.351-357
    • /
    • 2022
  • Purpose: Convolutional neural networks (CNNs) have rapidly emerged as one of the most promising artificial intelligence methods in the field of medical and dental research. CNNs can provide an effective diagnostic methodology allowing for the detection of early-staged diseases. Therefore, this study aimed to evaluate the performance of a deep CNN algorithm for apical lesion segmentation from panoramic radiographs. Materials and Methods: A total of 1000 panoramic images showing apical lesions were separated into training (n=800, 80%), validation (n=100, 10%), and test (n=100, 10%) datasets. The performance of identifying apical lesions was evaluated by calculating the precision, recall, and F1-score. Results: In the test group of 180 apical lesions, 147 lesions were segmented from panoramic radiographs with an intersection over union (IoU) threshold of 0.3. The F1-score values, as a measure of performance, were 0.828, 0.815, and 0.742, respectively, with IoU thresholds of 0.3, 0.4, and 0.5. Conclusion: This study showed the potential utility of a deep learning-guided approach for the segmentation of apical lesions. The deep CNN algorithm using U-Net demonstrated considerably high performance in detecting apical lesions.

A Study on the Optimization of Convolution Operation Speed through FFT Algorithm (FFT 적용을 통한 Convolution 연산속도 향상에 관한 연구)

  • Lim, Su-Chang;Kim, Jong-Chan
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.11
    • /
    • pp.1552-1559
    • /
    • 2021
  • Convolution neural networks (CNNs) show notable performance in image processing and are used as representative core models. CNNs extract and learn features from large amounts of train dataset. In general, it has a structure in which a convolution layer and a fully connected layer are stacked. The core of CNN is the convolution layer. The size of the kernel used for feature extraction and the number that affect the depth of the feature map determine the amount of weight parameters of the CNN that can be learned. These parameters are the main causes of increasing the computational complexity and memory usage of the entire neural network. The most computationally expensive components in CNNs are fully connected and spatial convolution computations. In this paper, we propose a Fourier Convolution Neural Network that performs the operation of the convolution layer in the Fourier domain. We work on modifying and improving the amount of computation by applying the fast fourier transform method. Using the MNIST dataset, the performance was similar to that of the general CNN in terms of accuracy. In terms of operation speed, 7.2% faster operation speed was achieved. An average of 19% faster speed was achieved in experiments using 1024x1024 images and various sizes of kernels.

Comparison of estimating vegetation index for outdoor free-range pig production using convolutional neural networks

  • Sang-Hyon OH;Hee-Mun Park;Jin-Hyun Park
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1254-1269
    • /
    • 2023
  • This study aims to predict the change in corn share according to the grazing of 20 gestational sows in a mature corn field by taking images with a camera-equipped unmanned air vehicle (UAV). Deep learning based on convolutional neural networks (CNNs) has been verified for its performance in various areas. It has also demonstrated high recognition accuracy and detection time in agricultural applications such as pest and disease diagnosis and prediction. A large amount of data is required to train CNNs effectively. Still, since UAVs capture only a limited number of images, we propose a data augmentation method that can effectively increase data. And most occupancy prediction predicts occupancy by designing a CNN-based object detector for an image and counting the number of recognized objects or calculating the number of pixels occupied by an object. These methods require complex occupancy rate calculations; the accuracy depends on whether the object features of interest are visible in the image. However, in this study, CNN is not approached as a corn object detection and classification problem but as a function approximation and regression problem so that the occupancy rate of corn objects in an image can be represented as the CNN output. The proposed method effectively estimates occupancy for a limited number of cornfield photos, shows excellent prediction accuracy, and confirms the potential and scalability of deep learning.

Development of an Optimal Convolutional Neural Network Backbone Model for Personalized Rice Consumption Monitoring in Institutional Food Service using Feature Extraction

  • Young Hoon Park;Eun Young Choi
    • The Korean Journal of Food And Nutrition
    • /
    • v.37 no.4
    • /
    • pp.197-210
    • /
    • 2024
  • This study aims to develop a deep learning model to monitor rice serving amounts in institutional foodservice, enhancing personalized nutrition management. The goal is to identify the best convolutional neural network (CNN) for detecting rice quantities on serving trays, addressing balanced dietary intake challenges. Both a vanilla CNN and 12 pre-trained CNNs were tested, using features extracted from images of varying rice quantities on white trays. Configurations included optimizers, image generation, dropout, feature extraction, and fine-tuning, with top-1 validation accuracy as the evaluation metric. The vanilla CNN achieved 60% top-1 validation accuracy, while pre-trained CNNs significantly improved performance, reaching up to 90% accuracy. MobileNetV2, suitable for mobile devices, achieved a minimum 76% accuracy. These results suggest the model can effectively monitor rice servings, with potential for improvement through ongoing data collection and training. This development represents a significant advancement in personalized nutrition management, with high validation accuracy indicating its potential utility in dietary management. Continuous improvement based on expanding datasets promises enhanced precision and reliability, contributing to better health outcomes.

Remote Sensing Image Classification for Land Cover Mapping in Developing Countries: A Novel Deep Learning Approach

  • Lynda, Nzurumike Obianuju;Nnanna, Nwojo Agwu;Boukar, Moussa Mahamat
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.214-222
    • /
    • 2022
  • Convolutional Neural networks (CNNs) are a category of deep learning networks that have proven very effective in computer vision tasks such as image classification. Notwithstanding, not much has been seen in its use for remote sensing image classification in developing countries. This is majorly due to the scarcity of training data. Recently, transfer learning technique has successfully been used to develop state-of-the art models for remote sensing (RS) image classification tasks using training and testing data from well-known RS data repositories. However, the ability of such model to classify RS test data from a different dataset has not been sufficiently investigated. In this paper, we propose a deep CNN model that can classify RS test data from a dataset different from the training dataset. To achieve our objective, we first, re-trained a ResNet-50 model using EuroSAT, a large-scale RS dataset to develop a base model then we integrated Augmentation and Ensemble learning to improve its generalization ability. We further experimented on the ability of this model to classify a novel dataset (Nig_Images). The final classification results shows that our model achieves a 96% and 80% accuracy on EuroSAT and Nig_Images test data respectively. Adequate knowledge and usage of this framework is expected to encourage research and the usage of deep CNNs for land cover mapping in cases of lack of training data as obtainable in developing countries.