• 제목/요약/키워드: Deep Learning

검색결과 5,680건 처리시간 0.03초

Copper Filter Dryer 품질보증을 위한 결함 검출 및 원인 분석 (Defect Detection and Cause Analysis for Copper Filter Dryer Quality Assurance)

  • 오석민;박진제;다어반권;장병호;김흥재;김창순
    • 한국산업정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.107-116
    • /
    • 2024
  • Copper Filter Dryer(CFD)는 냉동 및 냉방 시스템에서 냉매의 순환 시 불순물을 제거하여 깨끗한 냉매를 유지하는 역할을 하며, CFD의 결함은 냉동 및 냉방 시스템의 누수, 수명 저하 등 제품의 결함으로 이어질 수 있어 품질보증이 필수적이다. 기존에는 품질 검사 단계에서 작업자가 검사하고 결함을 판단하는 방법이 주로 사용되었으나, 이러한 방법은 주관적으로 판단하기 때문에 정확하지 못하다. 본 논문에서는 CFD 축관 및 용접 공정 과정에서 발생하는 결함을 검출하고 기존의 품질 검사를 대체하기 위해 YOLOv7 객체 감지 알고리즘을 사용하여 결함을 검출했고, F1-Score 0.954, 0.895의 검출 성능을 확인하였다. 또한, 결함 이미지의 Timestamp에 해당하는 센서 데이터 분석을 통해 용접 과정 중 발생하는 결함의 원인을 분석하였다. 본 논문은 CFD 공정 중 발생하는 결함을 검출하고 원인을 분석함으로써 제조 품질보증과 개선 방안을 제시한다.

표준시방서 기반의 의미론적 분석을 반영한 건설 현장 사진 자동 분류 모델 개발 (Development of an Automatic Classification Model for Construction Site Photos with Semantic Analysis based on Korean Construction Specification )

  • 박민건;김경환
    • 한국건설관리학회논문집
    • /
    • 제25권3호
    • /
    • pp.58-67
    • /
    • 2024
  • 4차 산업 시대에서의 데이터는 산업의 생산성을 높이는 데 매우 중요한 역할을 하고 있다. 활용 가능한 데이터가 부족한 건설산업의 디지털화 수준을 높이기 위해서 본 연구에서는 건설 현장 사진을 공종별로 분류하는 모델을 연구하였다. 이미지만을 가지고 분류하는 기존의 이미지 분류 모델과 달리, 본 연구는 표준시방서에서 객체와 공종 간의 중요도를 추출하여 이를 분류 과정에 반영하는 방식으로 공종에 대한 의미론적인 분석을 포함한 분류 모델을 제안하였다. 객체와 공종 간의 중요도는 사진 내에서 탐지한 객체와 표준시방서의 정보를 연결하여 추출한 후 모델에 반영하였고, 이러한 방식으로 개발된 모델을 분류 프로그램에 적용하여 실제 실무에서의 유용성을 확인해 보았다. 제안한 모델은 결과에 해석가능성과 신뢰도를 높여주는 것뿐만 아니라 현장 기사들이 사진을 분류하는데 용이성을 주게 되며, 이러한 연구의 결과는 건설산업의 디지털화에 기여할 수 있을 것이다.

Computing machinery techniques for performance prediction of TBM using rock geomechanical data in sedimentary and volcanic formations

  • Hanan Samadi;Arsalan Mahmoodzadeh;Shtwai Alsubai;Abdullah Alqahtani;Abed Alanazi;Ahmed Babeker Elhag
    • Geomechanics and Engineering
    • /
    • 제37권3호
    • /
    • pp.223-241
    • /
    • 2024
  • Evaluating the performance of Tunnel Boring Machines (TBMs) stands as a pivotal juncture in the domain of hard rock mechanized tunneling, essential for achieving both a dependable construction timeline and utilization rate. In this investigation, three advanced artificial neural networks namely, gated recurrent unit (GRU), back propagation neural network (BPNN), and simple recurrent neural network (SRNN) were crafted to prognosticate TBM-rate of penetration (ROP). Drawing from a dataset comprising 1125 data points amassed during the construction of the Alborze Service Tunnel, the study commenced. Initially, five geomechanical parameters were scrutinized for their impact on TBM-ROP efficiency. Subsequent statistical analyses narrowed down the effective parameters to three, including uniaxial compressive strength (UCS), peak slope index (PSI), and Brazilian tensile strength (BTS). Among the methodologies employed, GRU emerged as the most robust model, demonstrating exceptional predictive prowess for TBM-ROP with staggering accuracy metrics on the testing subset (R2 = 0.87, NRMSE = 6.76E-04, MAD = 2.85E-05). The proposed models present viable solutions for analogous ground and TBM tunneling scenarios, particularly beneficial in routes predominantly composed of volcanic and sedimentary rock formations. Leveraging forecasted parameters holds the promise of enhancing both machine efficiency and construction safety within TBM tunneling endeavors.

YOLOv3을 이용한 과일표피 불량검출 모델: 복숭아 사례 (Detection Model of Fruit Epidermal Defects Using YOLOv3: A Case of Peach)

  • 이희준;이원석;최인혁;이충권
    • 경영정보학연구
    • /
    • 제22권1호
    • /
    • pp.113-124
    • /
    • 2020
  • 농가를 운영함에 있어서 수확한 작물에 대한 품질을 평가하여 불량품을 분류하는 작업은 매우 중요하다. 그러나, 농가는 부족한 자본과 인력으로 인하여 품질평가에 소요되는 비용과 시간을 감당하는데 어려움이 있다. 이에 본 연구는 인공지능 기술인 딥 러닝 알고리즘을 이용하여 과일의 표피를 분석함으로써 불량을 검출하고자 한다. 과일을 촬영한 동영상 이미지에 대하여 영역기반 합성곱 신경망(Region Convolutional Neural Network)을 기반으로 한 YOLOv3 알고리즘을 적용하여 표피를 분석할 수 있는 모델을 개발하였다. 총 4개의 클래스를 정해서 학습을 진행하였고, 총 97,600번의 epoch을 통해서 우수한 성능의 불량검출 모델을 얻을 수 있었다. 본 연구에서 제안한 농작물 불량검출 모델은 데이터 수집, 분석된 데이터를 통한 품질평가, 그리고 불량검출에 이르는 과정의 자동화에 활용될 수 있다. 특히, 농작물들 중에서도 외상에 가장 취약한 복숭아를 대상으로 분석모델을 개발하였기 때문에, 다른 작물에도 적용될 수 있을 것으로 기대된다.

대화문 재구조화를 통한 한국어 대화문 요약 (Summarization of Korean Dialogues through Dialogue Restructuring)

  • 김은희;임명진;신주현
    • 스마트미디어저널
    • /
    • 제12권11호
    • /
    • pp.77-85
    • /
    • 2023
  • COVID-19 이후 온라인을 통한 소통이 증가하여 다양한 플랫폼을 기반으로 소통을 위한 대화 텍스트 데이터가 대량으로 축적되고 있다. 텍스트 데이터로부터 유의미한 정보를 추출하기 위한 텍스트 요약에 대한 중요성이 더욱 증가함에 따라 딥러닝을 활용한 추상 요약 연구가 활발하게 이루어지고 있다. 그러나 대화 데이터는 뉴스 기사와 같은 정형화된 텍스트에 비해 누락 및 변형이 많아 대화 상황을 다양한 관점에서 고려해야 하는 특이성이 있다. 특히 어휘 생략과 동시에 내용과 관련 없는 표현 요소들이 대화의 내용을 요약하는 데 방해가 된다. 그러므로 본 연구에서는 한국어 대화 데이터의 특성을 고려하여 발화문을 재구조화하고 KoBART 기반의 사전학습된 텍스트 요약 모델을 파인 튜닝후, 요약문에서 중복 요소를 제거하는 정제 작업을 통해 대화 데이터 요약 성능을 향상시키고자 한다. 발화문을 재구조화하는 방법으로는 발화 순서에 따라 재구조화는 방법과 중심 발화자를 기준으로 재구조화하는 방법을 결합하였다. 대화문 재구조화 방법을 적용한 결과, Rouge-1 점수가 4 정도 향상되었다. 본 연구의 대화 특성을 고려한 재구조화 방법이 한국어 대화 요약 성능 향상에 유의미함을 입증하였다.

인공지능시대의 교육철학 소고 (A Study for Philosophy of education in the era of AI)

  • 곽태진
    • 한국교육논총
    • /
    • 제40권2호
    • /
    • pp.1-16
    • /
    • 2019
  • 지능정보사회는 사물, 지식, 계산을 키워드로 하는 새로운 세계이다. 이 세계에서 교육개혁의 철학적 조건은 무엇인가? 로빈슨과 애로니카(2015)는 현재의 교육개혁이 유기 농업이라는 상징을 중심으로 이루어져야 한다고 주장한바 여기에는 유기체로서의 인간의 존엄성에 대한 문제의식이 담겨 있다. 인간은 지능과 생명의 결합체이다. 인공지능의 개발은 안드로이드의 상호작용 증가에 따른 인간적 본질에 대한 물음을 제기한다. 현실적으로는 딥러닝으로 상징되는 인공지능의 발전이 교육개혁의 조건이 될 것이다. 반면 정보기술과 예술의 결합은 새로운 생명 이미지의 창출을 통해 인공생명의 문제, 곧 생명 자체에 관한 문제를 제기할 것이다. 인간적 본질에 대한 물음이 생명 자체에 관한 물음과 함께 회귀한다. 인공지능과 인공생명이 낳는 철학적 물음은 교육적 물음과 패러독스를 이루어 미래의 교육개혁에 난문(難問)을 던질 것이다.

보행자 및 차량 검지를 위한 레이더 영상 융복합 시스템 연구 (A Study on Radar Video Fusion Systems for Pedestrian and Vehicle Detection)

  • 조성윤;윤여환
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.197-205
    • /
    • 2024
  • 자율주행 자동차 개발 및 상용화에 있어서 주행안전도 확보가 가장 중요한 시점에서 이를 위해 전방 및 주행차량 주변에 존재하는 다양한 정적/동적 차량의 인식과 검출 성능을 고도화 및 최적화하기 위한 AI, 빅데이터 기반 알고리즘개발 등이 연구되고 있다. 하지만 레이더와 카메라의 고유한 장점을 활용하여 동일한 차량으로 인식하기 위한 연구 사례들이 많이 있지만, 딥러닝 영상 처리 기술을 이용하지 않거나, 레이더의 성능상의 문제로 짧은 거리만 동일한 표적으로 감지하고 있다. 따라서 레이더 장비와 카메라 장비에서 수집할 수 있는 데이터셋을 구성하고, 데이터셋의 오차를 계산하여 동일한 표적으로 인식하는 융합 기반 차량 인식 방법이 필요하다. 본 논문에서는 레이더와 CCTV(영상) 설치 위치에 따라 동일한 객체로 판단하기에 데이터 오차가 발생하기 때문에 설치한 위치에 따라 위치 정보를 연동할 수 있는 기술 개발을 목표로 한다.

LH-FAS v2: 머리 자세 추정 기반 경량 얼굴 위조 방지 기술 (LH-FAS v2: Head Pose Estimation-Based Lightweight Face Anti-Spoofing)

  • 허현범;양혜리;정성욱;이경재
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.309-316
    • /
    • 2024
  • 얼굴 인식 기술은 다양한 분야에서 활용되고 있지만, 이는 사진 스푸핑과 같은 위조 공격에 취약하다는 문제를 가지고 있다. 이를 극복하기 위한 여러 연구가 진행되고 있지만, 대부분은 멀티모달 카메라와 같은 특별한 장비를 장착하거나 고성능 환경에서 동작하는 것을 전제로 하고 있다. 본 연구는 얼굴 인식 위조 공격 문제를 해결하기 위해, 특별한 장비 없이 일반적인 웹캠에서 동작할 수 있는 LH-FAS v2를 제안한다. 제안된 방법에서는, 머리 자세 추정에는 FSA-Net을, 얼굴 식별에는 ArcFace를 활용하여 사진 스푸핑 여부를 판별한다. 실험을 위해, 사진 스푸핑 공격 비디오로 구성된 VD4PS 데이터셋을 제시하였으며, 이를 통해 LH-FAS v2의 균형 잡힌 정확도와 속도를 확인하였다. 본 방법은 향후 사진 스푸핑 방어에 효과적일 것으로 기대한다.

MRI 신호획득과 영상재구성에서의 인공지능 적용 (Applications of Artificial Intelligence in MR Image Acquisition and Reconstruction)

  • 강정화;남윤호
    • 대한영상의학회지
    • /
    • 제83권6호
    • /
    • pp.1229-1239
    • /
    • 2022
  • 최근 인공지능기술은 자기공명영상(이하 MRI)의 폭넓은 분야에서 임상적 활용가치를 보여주고 있다. 특히, MRI에서 영상획득과정의 효율성 및 복원된 영상의 품질을 향상시키기 위한 목적으로 인공지능모델의 개발이 활발하다. 임상에서 활용되는 다양한 MRI 프로토콜에서 인공지능은 병렬영상기법과 같은 기존 가속화 방법 대비 추가적인 영상획득시간을 가능하게 해줄 수 것으로 기대된다. 또한, 펄스시퀀스 디자인, 영상의 인공물 감소, 자동화된 품질평가와 같은 영역에서도 인공지능모델은 도움을 줄 수 있는 연구 결과들이 소개되고 있다. 또한, 영상분석 과정에서 중요한 장비 및 프로토콜의 영향을 줄여줄 수 있는 방법으로도 인공지능 기반의 접근이 이루어지고 있다. 본 종설에서는 MRI 영상의 획득 과정에서 최근 인공지능기술들이 적용되고 있는 분야 및 해당 분야에서의 인공지능기술의 개발 및 적용과 관련된 현안들을 소개하고자 한다.

Positive Predictive Values of Abnormality Scores From a Commercial Artificial Intelligence-Based Computer-Aided Diagnosis for Mammography

  • Si Eun Lee;Hanpyo Hong;Eun-Kyung Kim
    • Korean Journal of Radiology
    • /
    • 제25권4호
    • /
    • pp.343-350
    • /
    • 2024
  • Objective: Artificial intelligence-based computer-aided diagnosis (AI-CAD) is increasingly used in mammography. While the continuous scores of AI-CAD have been related to malignancy risk, the understanding of how to interpret and apply these scores remains limited. We investigated the positive predictive values (PPVs) of the abnormality scores generated by a deep learning-based commercial AI-CAD system and analyzed them in relation to clinical and radiological findings. Materials and Methods: From March 2020 to May 2022, 656 breasts from 599 women (mean age 52.6 ± 11.5 years, including 0.6% [4/599] high-risk women) who underwent mammography and received positive AI-CAD results (Lunit Insight MMG, abnormality score ≥ 10) were retrospectively included in this study. Univariable and multivariable analyses were performed to evaluate the associations between the AI-CAD abnormality scores and clinical and radiological factors. The breasts were subdivided according to the abnormality scores into groups 1 (10-49), 2 (50-69), 3 (70-89), and 4 (90-100) using the optimal binning method. The PPVs were calculated for all breasts and subgroups. Results: Diagnostic indications and positive imaging findings by radiologists were associated with higher abnormality scores in the multivariable regression analysis. The overall PPV of AI-CAD was 32.5% (213/656) for all breasts, including 213 breast cancers, 129 breasts with benign biopsy results, and 314 breasts with benign outcomes in the follow-up or diagnostic studies. In the screening mammography subgroup, the PPVs were 18.6% (58/312) overall and 5.1% (12/235), 29.0% (9/31), 57.9% (11/19), and 96.3% (26/27) for score groups 1, 2, 3, and 4, respectively. The PPVs were significantly higher in women with diagnostic indications (45.1% [155/344]), palpability (51.9% [149/287]), fatty breasts (61.2% [60/98]), and certain imaging findings (masses with or without calcifications and distortion). Conclusion: PPV increased with increasing AI-CAD abnormality scores. The PPVs of AI-CAD satisfied the acceptable PPV range according to Breast Imaging-Reporting and Data System for screening mammography and were higher for diagnostic mammography.