• Title/Summary/Keyword: Decreasing current density

Search Result 115, Processing Time 0.024 seconds

Dielectric breakdown of anodic oxide films formed on AA6061 in 20% H2O4and 8% H2SO4+ 3% C2H2O4 solutions (20% 황산 및 8% 황산 + 3% 옥살산에서 AA6061 합금 표면에 형성된 아노다이징 피막의 내전압 특성)

  • Cheolgi Park;Jaehwak Jang;Yunsuk Hyun;Sungmo Moon
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.1
    • /
    • pp.8-13
    • /
    • 2024
  • Anodizing of Al6061 alloy was conducted in two different electrolytes of 20% sulfuric acid and 8% sulfuric acid + 3 % oxalic acid solutions at a constant current or decreasing current density conditions, and its dielectric breakdown voltage was measured. The surface morphology of anodic oxide films was observed by TEM and thermal treatment was carried out at 400 ℃ for 2 h to evaluate the resistance of the anodic oxide films to crack initiation. The anodic oxide film formed in 8% sulfuric acid + 3 % oxalic acid solution showed higher dielectric breakdown voltage and better resistance to crack initiation at 400 ℃ than that formed in 20% sulfuric acid solution. The dielectric breakdown voltage increased 6 ~12% by applying decreasing current density comparing with a constant current density.

Study on the Mechanical Properties and Microstructure of Nickel Sulfamate Electroform (니켈쌀파메이트 전주층의 물성과 미세구조)

  • 김인곤
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.1
    • /
    • pp.40-48
    • /
    • 2004
  • Hardness and internal stress are very important in nickel electroforming. Nickel sulfamate bath has been widely used in electroforming because of its low internal stress and moderate hardness. Nickel sulfamate bath without chloride was chosen to investigated the effect of plating variable such as temperature, PH, current density and sodium naphthalene trisulfonate as addition agent on the hardness and internal stress. It was found that hardness increased with increasing temperature and decreasing current density and ranged from 150∼310 DPH. The hardness was highest at $55^{\circ}C$ and 10∼40 mA/$\textrm{cm}^2$. The internal stress increased with increasing current density and decreasing temperature. It was minimum at PH 3.0∼3.8. Low internal stress within $\pm$1,500 psi was obtained at both $50^{\circ}C$ and $55^{\circ}C$ in 10-20 mA/$\textrm{cm}^2$. The addition of sodium naphthalene trisulfonate was found to be effective in refine columnar grains thus resulted in decreasing internal stress, increasing hardness and improving brightness.

A Study on the Numerical Analysis of Magnetic Flux Density by a Solenoid for MIAB Welding (MIAB용접에서 코일에 의한 자속밀도 분포의 수치적 해석에 관한 연구)

  • Choe, Dong-Hyeok;Kim, Jae-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.73-81
    • /
    • 2001
  • The MIAB welding uses a rotating arc as its heat source and is known as an efficient method fur pipe butt welding. The arc is rotated around the weld line by the electro-magnetic force resulting from the interaction of arc current and magnetic field. The electro-magnetic force is affected by magnetic flux density, arc current, and arc length. Especially, the magnetic flux density is an important factor on arc rotation and weld quality. This paper presents a 2D finite element model for the analysis of magnetic flux density in the actual welding conditions. The magnetic flux density is mainly dependent on gap between two pipes, the position of coil from gap center, exciting current, and relative permeability. Thus, the relations between magnetic flux density and main factors were investigated through experiment and analysis. Experiments were performed for the steel pipes(48.1mm O.D and 2.0mm thickness). The analysis results of magnetic flux density reveal that it increases with increasing exciting current, increasing relative permeability, decreasing distance from gap center to coil, and decreasing gap size. It is considered that the results of this study can be used as important data on the design of coil system and MIAB welding system.

  • PDF

The effect of HRT, current density, and packing ratio on nitrate nitrogen removal efficiency and current efficiency in BRM-BER (고정상 담체를 충진한 BER에서 HRT, 전류밀도 및 담체 충진율 변화가 질산성 질소 제거효율과 전류이용효율에 미치는 영향)

  • Whang, Gye-Dae;Lee, Sang-Keun;Sung, Hae-Chang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.433-442
    • /
    • 2010
  • BER at different packing ratios of bio-ring media(BRM) was tested to investigate the effect of varying hydraulic retention time (HRT) and current density on the nitrate removal and current efficiency. In the preliminary batch mode experiment of BERs, current density was applied at 2.0 A/$m^2$, 4.0 A/$m^2$, 4.8 A/$m^2$, which correspond to the designation of reactor #1, #2, #3, respectively. The reactor #2 showed a highest nitrate removal rate of 162.0 mg $NO_3{^-}$-N/L/d, and the kinetics of nitrate removal rate was defined as the Zero order reaction. In the primary experiment of BERs, four BERs packed with BRM were operated in varying HRT and current, and the packing ratios of reactor #1, #2, #3 and #4 were 0%, 8%, 16%, 24%. respectively. This results of the experiments indicated that the nitrate removal rate and current efficiency were increased significantly cause of growing of autotrophic denitrification microorganisms on the surface of cathode and media by increasing of the current density and decreasing of HRT. However, The decreasing of nitrate removal rate and current efficiencies were observed in the condition of HRT of 5.25 hr and 4.8 A/$m^2$ of current density. With more increasing current density and decreasing of HRT, the hydrogen inhibition occurred at the surface of cathode. Moreover, nitrate removal rate by autotrophic denitrification microorganisms attached on the media surface was observed to be limited by no longer increasing dissolved hydrogen concentration of each reactor. In conclusion, the highest nitrate nitrogen removal and current efficiency could be achieved when the BER was operated at the conditions of 7 hr HRT, current density of 4.0 A/$m^2$, and 16% packing ratio. And it was found that the amount of nitrate removal by microorganisms attached on the surface of cathode and media (BRM) was 178.2 mg/L and 52.2 mg/L respectively. and the amount of nitrate removal per MLVSS was 0.435 g $NO_3{^-}$-N/g $MLVSS{\cdot}d$ and 0.336 $NO_3{^-}$-N/g $MLVSS{\cdot}d$.

Effects of Alloying Elements on the Surface Characteristics of Fe-38Al Intermetallic Compounds (Fe-38 at.% Al계 금속간화합물의 표면특성에 미치는 합금원소의 영향)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.128-136
    • /
    • 2004
  • Effects of alloying elements on the surface characteristics of Fe-38Al intermetallic compounds were investigated using potentiostat. The specimens were casted by the vacuum arc melting. The subsequent homogenization and the stabilization led to the homogeneous DO$_3$ structure of the specimen. After the corrosion tests, the surface of the tested specimen was observed by the optical microscopy and scanning electron microscopy(SEM). For Fe-38 at.% Al intermetallic compound, the addition of Cr and Mo proved to be beneficial in decreasing the grain boundary attack by decreasing the active current density. Addition of Band Nb resulted in a higher active current density and also a higher passive current density. These results indicated the role of Cr and Mo in improving the pitting corrosion resistance of Fe-38 at.%Al intermetallic compound. Band Nb addition to Fe-38 at.%Al accelerated the granular corrosion. Fe-38 at.%Al containing Cr and Mo showed remarkably improved pitting corrosion resistance in comparison with Band Nb addition to Fe-38 at. %Al.

Effect of Current Density and Solution pH on Properties of Electrodeposited Cu Thin Films from Sulfate Baths for FCCL Applications (Sulfate 용액을 이용하여 전기도금 한 FCCL용 Cu 필름의 특성에 미치는 전류밀도와 pH의 영향)

  • Shin, Dong-Yul;Park, Doek-Yong;Koo, Bon-Keup
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.145-151
    • /
    • 2009
  • Nanocrystalline Cu thin films for FCCL were electrodeposited from sulfate baths to investigate systematically the influences of current density, solution pH on current efficiency, residual stress, surface morphology, and microstructure of thin Cu films. Current efficiencies were measured to be approximately 100%, irrespective of the applied current density and solution pH. But these influenced residual stress, surface morphology, XRD pattern, and grain size of electrodeposited Cu thin film. The residual stress decreased with decreasing the surface roughness, but increased with increasing the fcc(111) peak strength of XRD patterns.

Contact Area-Dependent Electron Transport in Au/n-type Ge Schottky Junction

  • Kim, Hogyoung;Lee, Da Hye;Myung, Hye Seon
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.412-416
    • /
    • 2016
  • The electrical properties of Au/n-type Ge Schottky contacts with different contact areas were investigated using current-voltage (I-V) measurements. Analyses of the reverse bias current characteristics showed that the Poole-Frenkel effect became strong with decreasing contact area. The contribution of the perimeter current density to the total current density was found to increase with increasing reverse bias voltage. Fitting of the forward bias I-V characteristics by considering various transport models revealed that the tunneling current is dominant in the low forward bias region. The contributions of both the thermionic emission (TE) and the generation-recombination (GR) currents to the total current were similar regardless of the contact area, indicating that these currents mainly flow through the bulk region. In contrast, the contribution of the tunneling current to the total current increased with decreasing contact area. The largest $E_{00}$ value (related to tunneling probability) for the smallest contact area was associated with higher tunneling effect.

current profiles in a coated conductor with transport current (외부 전류가 흐를 때 초전도 선재에서의 전류 분포)

  • Yoo, Jae-Un;Lee, Sang-Moo;Jung, Ye-Hyun;Lee, Jae-Young;Youm, Do-Jun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.1-4
    • /
    • 2007
  • The current profiles in a coated conductor with transport current were calculated using an iterative inversion method from the data of the magnetic flux density profiles measured. The applied current was increased from 0 to 60 A by 10A step and decreased down to -60A by 20A step. The magnetic flux profiles were measured at a distance of 400 mm above the surface of the coated conductor using a scanning hall probe method. The current profiles calculated were very different from the Bean model: current density profile is not a constant in the critical region. However the aspect of the change of the current and magnetic flux density profiles in the case of decreasing applied current are similar to the theoretical calculations in Brandt's paper.

Influence of Channel Length on the Performance of Poly-Si Thin-Film Transistors (다결정 실리콘 박막 트랜지스터의 성능에 대한 채널 길이의 영향)

  • 이정석;장창덕;백도현;이용재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.450-453
    • /
    • 1999
  • In this paper, The relationship between device performance and channel length(1.5-50$\mu$m) in polysilicon thin-film transistors fabricated by SPC technology was Investigated by measuring electric Properties such as 1-V characteristics, field effect mobility, threshold voltage, subthreshold swing, and trap density in grain boundary with channel length. The drain current at ON-state increases with decreasing channel length due to increase of the drain field, while OFF-state current (leakage current) is independent of channel length. The field effect mobility decrease with channel length due to decreasing carrier life time by the avalanche injection of the carrier at high drain field. The threshold voltage and subthreshold swing decrease with channel length, and then increase in 1.5 $\mu$m increase of increase of trap density in grain boundary by impact ionization.

  • PDF

Fabrication of BSCCO high-Tc superconducting current lead (BSCCO 고온초전도 전류도입선의 제조)

  • 하동우;오상수;류강식;장현만
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.252-255
    • /
    • 1996
  • Superconducting current lead is one of the promising applications of the oxide high-Tc superconductors, because they have the advantage of decreasing heat conduction to low temperature region, comparing with a conventional cooper alloy lead. High critical current density is a key factor for the applications such as current lead. (Bi,Pb)$_2$Sr$_2$Ca$_2$Cu$_3$O$\_$x/ high Tc superconductor haute been investigated in terms of critical current density. Bi-2223 superconducting current lead made by CIP and solid state sintering process. Bi-2223 current lead that heat treated at 836$^{\circ}C$ for 240 h in 1/13 P$\_$O$_2$/ had over 150 A/$\textrm{cm}^2$ of critical current density at 77K. We knew that the superconducting properties of tube type current leads were better than rods type of them. And we investigated the relation of Bi-2223 formation and heat treatment condition by XRD and SEM analysis.

  • PDF