DOI QR코드

DOI QR Code

Contact Area-Dependent Electron Transport in Au/n-type Ge Schottky Junction

  • Kim, Hogyoung (Department of Visual Optics, Seoul National University of Science and Technology (Seoultech)) ;
  • Lee, Da Hye (Department of Visual Optics, Seoul National University of Science and Technology (Seoultech)) ;
  • Myung, Hye Seon (Department of Visual Optics, Seoul National University of Science and Technology (Seoultech))
  • Received : 2016.06.16
  • Accepted : 2016.07.01
  • Published : 2016.08.27

Abstract

The electrical properties of Au/n-type Ge Schottky contacts with different contact areas were investigated using current-voltage (I-V) measurements. Analyses of the reverse bias current characteristics showed that the Poole-Frenkel effect became strong with decreasing contact area. The contribution of the perimeter current density to the total current density was found to increase with increasing reverse bias voltage. Fitting of the forward bias I-V characteristics by considering various transport models revealed that the tunneling current is dominant in the low forward bias region. The contributions of both the thermionic emission (TE) and the generation-recombination (GR) currents to the total current were similar regardless of the contact area, indicating that these currents mainly flow through the bulk region. In contrast, the contribution of the tunneling current to the total current increased with decreasing contact area. The largest $E_{00}$ value (related to tunneling probability) for the smallest contact area was associated with higher tunneling effect.

Keywords

References

  1. N. Tanaka, K. Hasegawa, K. Yasinishi, N. Murakami and T. Oka, Appl. Phys. Exp. 8, 071001 (2015). https://doi.org/10.7567/APEX.8.071001
  2. V. Bahagwat, Y. Xiao, I. Bhat, R. Dutta, T. Refaat, M. Abedin and V. Kumar, J. Electronic. Mater., 35, 1613 (2006). https://doi.org/10.1007/s11664-006-0206-x
  3. G. Garcia-Belmonte, J. Montero, Y. Ayyad-Limonge, E. Barea, J. Bisquert and H. Bolink, Curr. Appl. Phys., 9, 414 (2009). https://doi.org/10.1016/j.cap.2008.03.018
  4. A. Willis, Solid State Electron., 33, 531 (1990). https://doi.org/10.1016/0038-1101(90)90237-9
  5. A. Dimoulas, P. Tsipas, A. Sotiropoulos and E. Evangelou, Appl. Phys. Lett., 89, 252110 (2006). https://doi.org/10.1063/1.2410241
  6. T. Nishimura, K. Kita and A. Toriumi, Appl. Phys. Lett., 91, 123123 (2007). https://doi.org/10.1063/1.2789701
  7. Y. Zhou, M. Ogawa, X. Han and K. Wang, Appl. Phys. Lett., 93, 202105 (2008). https://doi.org/10.1063/1.3028343
  8. A. Thathachary, K. Bhat, N. Bhat and M. Hegde, Appl. Phys. Lett.. 96, 152108 (2010). https://doi.org/10.1063/1.3387760
  9. J. Wu, Y. Wu, C. Hou, M. Wu, C. Lin and L. Chen, Appl. Phys. Lett., 99, 253504 (2011). https://doi.org/10.1063/1.3666779
  10. V. Kishore, P. Paramahans, S. Sadana, U. Ganguly and S. Lodha, Appl. Phys. Lett., 100, 142107 (2007).
  11. A. Suzuki, S. Asaba, J. Yokoi, K. Kato, M. Kurosawa, M. Sakashita, N. Taoka, O. Nakatsuka and S. Zaima, Japan. J. Appl. Phys., 53, 04EA06 (2014). https://doi.org/10.7567/JJAP.53.04EA06
  12. J. Sioomns, J. Phys. D: Appl. Phys., 4, 613 (1971). https://doi.org/10.1088/0022-3727/4/5/202
  13. H. Zhang, E. Miller and E. Yu, J. Appl. Phys., 99, 023703 (2006). https://doi.org/10.1063/1.2159547
  14. M. Carpenter, M. Melloch, M. Lundstrom and S. Tobin, Appl. Phys. Lett., 52, 2157 (1988). https://doi.org/10.1063/1.99563
  15. S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
  16. K. Suzue, S. Mohammad, Z. Fan, W. Kim, O. Aktas, A. Botchkarev and H. Morkoc, J. Appl. Phys., 80, 4467 (1996). https://doi.org/10.1063/1.363408
  17. H. Kim, C. Jung, S. Kim, Y. Cho and D. Kim, Curr. Appl. Phys., 16, 37 (2016). https://doi.org/10.1016/j.cap.2015.10.008
  18. A. Yu, Solid State Electron., 13, 239 (1970). https://doi.org/10.1016/0038-1101(70)90056-0

Cited by

  1. Dislocation-Related Electron Transport in Au Schottky Junctions on AlGaN/GaN vol.19, pp.2, 2018, https://doi.org/10.1007/s42341-018-0015-y