• 제목/요약/키워드: Decoupling controller

검색결과 134건 처리시간 0.025초

모드 분리 제어기를 이용한 시스템 규명 : 히든 모드를 갖는 구조물에의 적용 (System Identification Using Mode Decoupling Controller : Application to a Structure with Hidden Modes)

  • 하재훈;박영진;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1334-1337
    • /
    • 2006
  • System identification is the field of modeling dynamic systems from experimental data. As a modeling technique, we can mention finite element method (FEM). In addition, we are able to measure modal data as the experimental data. The system can be generally categorized into a gray box and black box. In the gray box, we know mathematical model of a system, but we don't know structural parameters exactly, so we need to estimate structural parameters. In the black box, we don't know a system completely, so we need to identify system from nothing. To date, various system identification methods have been developed. Among them, we introduce system realization theory which uses Hankel matrix and Eigensystem Realization Algorithm (ERA) that enable us to identify modal parameters from noisy measurement data. Although we obtain noise-free data, however, we are likely to face difficulties in identifying a structure with hidden modes. Hidden modes can be occurred when the input or output position comes to a nodal point. If we change a system using a mode decoupling controller, the hidden modes can be revealed. Because we know the perturbation quantities in a closed loop system with the controller, we can realize an original system by subtracting perturbation quantities from the closed loop system. In this paper, we propose a novel method to identify a structure with hidden modes using the mode decoupling controller and the associated example is given for illustration.

  • PDF

Hybrid Fuzzy PI-Control Scheme for Quasi Multi-Pulse Interline Power Flow Controllers Including the P-Q Decoupling Feature

  • Vural, Ahmet Mete;Bayindir, Kamil Cagatay
    • Journal of Power Electronics
    • /
    • 제12권5호
    • /
    • pp.787-799
    • /
    • 2012
  • Real and reactive power flows on a transmission line interact inherently. This situation degrades power flow controller performance when independent real and reactive power flow regulation is required. In this study, a quasi multi-pulse interline power flow controller (IPFC), consisting of eight six-pulse voltage source converters (VSC) switched at the fundamental frequency is proposed to control real and reactive power flows dynamically on a transmission line in response to a sequence of set-point changes formed by unit-step reference values. It is shown that the proposed hybrid fuzzy-PI commanded IPFC shows better decoupling performance than the parameter optimized PI controllers with analytically calculated feed-forward gains for decoupling. Comparative simulation studies are carried out on a 4-machine 4-bus test power system through a number of case studies. While only the fuzzy inference of the proposed control scheme has been modeled in MATLAB, the power system, converter power circuit, control and calculation blocks have been simulated in PSCAD/EMTDC by interfacing these two packages on-line.

불완전 모달 정보를 이용한 모드 분리 제어기 기반의 모델 개선법 (Model Updating Method Based on Mode Decoupling Controller with Incomplete Modal Data)

  • 하재훈;박윤식;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.963-966
    • /
    • 2005
  • Model updating method is known to the area to correct finite element models by the results of the experimental modal analysis. Most common methods in model updating depend on a parametric model of the structure. In this case, the number of parameters is normally smaller than that of modal data obtained from an experiment. In order to overcome this limitation, many researchers are trying to get modal data as many as possible to date. 1 want to name this method multiple modified-system generation method. These Methods consist of direct system modification method and feedback controller method. The direct system modification Is to add a mass or stiffness on the original structure or perturb the boundary conditions. The feedback controller method is to make the closed food system with sensor and actuator so as to get the closed loop modal data. In this paper, we need to focus on the feedback controller method because of its simplicity. Several methods related the feedback controller methods are virtual passive controller (VPC) sensitivity enhancement controller (SEC) and mode decoupling controller (MDC). Among them, we will apply MDC to the model updating problem. MDC has various advantages compared with other controllers, such as VPC and SEC. To begin with, only the target mode can be changed without changing modal property of non-target modes. In addition, it is possible to fix any modes if the number of sensors is equal to that of the system modes. Finally, the required control power to achieve desired change of target mode is always lower than those of other methods such as VPC. However, MDC can make the closed loop system unstable when using incomplete modal data. So we need to take action to avoid undesirable instability from incomplete modal data. In this paper, we address the method to design the unique and robust MDD obtained from incomplete modal data. The associated simulation will be Incorporated to demonstrate the usefulness of this method.

  • PDF

모터 파라미터 변화에 강인한 안정도 최대화 PI 제어기 설계 (Design of Robust Stability Maximizing PI Controller in Motor Parameter Variation)

  • 조내수;류지열;박철우;권우혁
    • 제어로봇시스템학회논문지
    • /
    • 제15권6호
    • /
    • pp.590-597
    • /
    • 2009
  • This paper propose a PI controller that maximizes the degree of stability using a stability in a simplified motor model the applies decoupling control. The PI controller gains are directly from the motor parameters, thereby reducing the element of trial and error, and, the Kharitonov equation was used to evaluate the robustness of the gains to changes in the motor parameters. In addition, the system poles are located in the same position, the proposed method can provide a fast response. The effectiveness of the proposed controller is verified by simulation results.

3상 부하 전류 제어를 위한 강인한 제어기 설계기법 (Robust Controller Design for the Regulation of Currents in a Three-phase Load)

  • 지수정;조남훈
    • 조명전기설비학회논문지
    • /
    • 제27권7호
    • /
    • pp.17-23
    • /
    • 2013
  • The regulation of currents in a three-phase load is an important issue for electric power systems. The most popular conventional method is a decoupling controller that compensates the coupling terms arising from DQ rotating frame transformation. Although the decoupling controller achieves decent performance in the absence of load parameter uncertainties, the variation of parameters causes performance to degrade intolerably. In this paper, we propose to use disturbance observer based controller to improve the control performance in spite of the parameter uncertainties. The computer simulation study validates the effectiveness of the proposed method.

유도전동기의 철손 보상을 위한 간접벡터방식의 구현 (Realization of Indirect Vector Controller to Compensate Ironloss of Induction Motor)

  • 박태식;유지윤;김성환
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권12호
    • /
    • pp.679-685
    • /
    • 1999
  • The purpose of this paper is realizing a rotor-flux-oriented indirect vector controller of an induction motor to compensate the effects of the ironloss generally ignored in the vector controller. Using general ironloss model of induction motor, the vector controller and new decoupling circuit considering ironloss is designed and realized. Also, slip, magnetizing current, stator current and decoupling circuits derived from ironloss model are compared with them from the model not including ironloss and the effects are scrutinized. Finally the total algorithm are realized in 2.2kW servo drive and its effectiveness is verified.

  • PDF

H2 Design of Decoupled Control Systems Based on Directional Interpolations

  • Park, Kiheon;Kim, Jin-Geol
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1551-1558
    • /
    • 2013
  • $H_2$ design of decoupled control systems is treated in the generalized plant model. The existence condition of a decoupling controller is stated and a parameterized form of all achievable decoupled closed loop transfer matrices is presented by using the directional interpolation approaches under the assumption of simple transmission zeros. The class of all decoupling controllers that yield finite cost function is obtained as a parameterized form and an illustrative example to find the optimal controller is provided.

선형 행렬 부등식을 이용한 정방 비결합 제어기의 $H_{\infty}$ 설계 ($H_{\infty}$ Design for Square Decoupling Controllers Using Linear Matrix Inequalities)

  • 강기원;이종성;민덕기;박기헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2642-2644
    • /
    • 2000
  • In this paper, the decoupling $H_{\infty}$ controller which minimizes maximum energy in the output signal is designed to reduce the coupling properties between input/output variables which make it difficult to efficiently control a system. And for a given decoupling $H_{\infty}$ problem, an efficient method is sought to find the controller coefficients through Linear Matrix Inequalities(LMI) by which the problem is formulated into a convex optimal problem.

  • PDF

The Control of Superheat and Capacity for a Variable Speed Refrigeration System Based on PI Control Logic

  • Hua, Li;Jeong, Seok-Kwon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제15권2호
    • /
    • pp.54-60
    • /
    • 2007
  • In this paper, we suggest the high efficient control method based on general PI control law for a variable speed refrigeration system. In the variable speed refrigeration system, the capacity and the superheat are mainly controlled by an inverter and an electronic expansion valve, respectively, for saving energy and improving coefficient of performance. Thus, we proposed a decoupling model to eliminate the interfering loop between the capacity and superheat at first. Next, we designed PI controller to control the capacity and superheat independently and simultaneously. Finally, the control performance was investigated through some experiments. The experimental results showed that the proposed PI controller based on the decoupling model can obtain good control performance under the various control references and thermal load.

궤환 모델 개선법을 위한 모드 분리 제어기 (Mode-decoupling controller for feedback model updating)

  • 정훈상;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.864-869
    • /
    • 2004
  • A novel concept of feedback loop design for modal test and model updating is proposed. This method uses the closed -loop natural frequency information for parameter modification to overcome the problems associated with the conventional method employing the modal sensitivity matrix. To obtain new modal information from closed-loop system, controllers should be effective in changing modal data while guaranteeing the stability of closed-loop system. It is very hard to guarantee the stability of the closed-loop system with non-collocated sensor and actuator set. Ill this research, we proposed a controller called mode-decoupling controller that can change a target mode as much as the designer wants guaranteeing the stability of closed-loop system. This controller can be computed just using measured open-loop modeshape matrix. A simulation based on time domain input/output data is performed to check the feasibility of proposed control method.

  • PDF