• Title/Summary/Keyword: Decolorization activity

Search Result 124, Processing Time 0.025 seconds

Optimization of Media Composition on the Production of Melanin Bleaching Enzyme from Peniophora sp. JS17 (Peniophora sp. JS17 유래 멜라닌 탈색 효소 생산을 위한 배지 조성의 최적화)

  • Son, Min-Jeong;Kim, Yeon-Hee;Nam, Soo-Wan;Jeon, Sung-Jong
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.250-258
    • /
    • 2019
  • Peniphora sp. JS17, isolated from forest old tree, produced extracellular enzymes that decolorized human hair melanin. The JS17 strain had laccase and manganese peroxidase activity while it did not has lignin peroxidase activity. Batch culture indicated that the melanin decolorization activity of JS17 strain originated from laccase. The culture conditions to maximize the production of melanin bleaching enzymes from Peniophora sp. JS17 mycelia were investigated. Among the tested media for the laccase production, minimal medium (2% glucose, 0.2% malt extract, 0.1% $KH_2PO_4$, 0.4% $MgSO_4{\cdot}7H_2O$) showed the highest activity of laccase. Then, to optimize the culture condition for the laccase activity, the influence of various carbon and nitrogen sources was investigated in minimal medium. Among various carbon and nitrogen sources, 2% xylose and 0.4% tryptone showed the highest production of laccase, respectively. The enzyme was purified using $(NH_4)_2SO_4$ precipitation and Hitrap Q sepharose column, and the purified enzyme showed two isoenzymatic bands with molecular masses of about 70 kDa by SDS-PAGE. The melanin decolorization activity was 77% and 55% within 48 h in the presence of 1-hydroxybenzotriazole (HBT) and syringaldehyde, respectively, whereas only about 9% melanin decolorized in case of no mediator.

Decolorization Efficiency of Different Dyes by Extract from Spent Mushroom Substrates of Pleurotus eryngii (큰느타리(Pleurotus eryngii)의 수확 후 배지추출물을 이용한 다양한 염료의 탈색효과)

  • Lim, Seon Hwa;Kwak, A Min;Min, Gyeong Jin;Kim, Sang Su;Lee, Sang Yeop;Kang, Hee Wan
    • The Korean Journal of Mycology
    • /
    • v.42 no.3
    • /
    • pp.213-218
    • /
    • 2014
  • Water extract from spent mushroom substrates (SMS) of Pleurotus eryngii was utilized in decolorization of eight synthetic dyes and wastewater from a textile factory. High laccase activity was detected in the extract of P. eryngii (SMSE). The SMSE showed that decolorization rate was 34~93% after 24 h incubation without any mediator on eight dyes including Rit-blue and Rit-red used in fiber dyeing. Dye decolorization rate more than 90% was observed on bromophenol blue and remazol brilliant blue R (RBBR). Dye in textile wastewater was decolorized at room temperature after three days by addition of P. eryngii SMSE. The results suggest that biological decolorization of dyes using the P. eryngii SMSE can be used as environmental friendly materials.

Antimicrobial Activity and Coloration of Environment-Friendly Biopolymer, Bacterial Cellulose (환경친화적 바이오폴리머인 세균 섬유소의 항균활성과 염색성)

  • Lee, Na-Ri;Jeong, Jin-Ha;Park, Sung-Bo;Jeong, Seong-Yun;Hwang, Dae-Youn;Kim, Hong-Sung;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.899-905
    • /
    • 2011
  • In order to develop bacterial cellulose (BC) with antimicrobial activity against pathogenic microorganisms, silver and chitosan were incorporated into BC, respectively. Experiment results showed that antimicrobial activity against pathogenic microorganisms was improved with increasing silver concentration. Chitosan also showed a direct proportion between its concentration and antimicrobial activity. These results suggest that antimicrobial effects of BC using silver and chitosan are well proven to be effective. We also tested the stainability of BC with natural colorant for the application of food industry. Stainability of BC was enhanced with increasing natural colorant concentration. Decolorization of BC stained was observed by dipping it into distilled water with one hour-intervals. As a result, there was no significant difference. Combination of natural colorant-stainability and antibiosis of BC is expected to be useful in making colored antibiotic BC in various industrial application areas, considering its antimicrobial activity, high stainability and low decolorization tendency.

Decolorization of dyes by a purified laccase from Coprinus comatus (정제된 먹물버섯(Coprinus comatus) laccase에 의한 염료 탈색)

  • Kim, Su Yeon;Choi, Ji Young;Choi, Hyoung T.
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.79-82
    • /
    • 2017
  • An inky cap, Coprinus comatus synthesizes and secretes a laccase in the liquid yeast extract peptone dextrose medium. We have successfully purified the enzyme through the ion-exchange chromatography and the preparative gel electrophoresis. The estimated molecular weight was 67 kDa by the SDS-PAGE analysis. Optimum pH was pH 4.3 and optimum temperature was $25^{\circ}C$. The Km value was 0.45 mM and the Vmax was 0.0132 OD/min/unit for o-tolidine. Purified laccase showed 49.3% decolorizing activity against remazol brilliant blue R (RBBR) and 41.6% decolorizing activity against Poly R-478 after 12 h incubation.

Study on Biological Activities of Extracts for Cosmeceutical Development from Lagerstroemia indica L. Branch (화장품 개발을 위한 배롱나무(Lagerstroemia indica Linnaeus) 가지 추출물의 생리활성에 관한 연구)

  • Lee, Byung-Guen;Kim, Jong-Hyeop;Ham, Sang-Gyeong;Lee, Chang-Eeon
    • Korean Journal of Plant Resources
    • /
    • v.27 no.1
    • /
    • pp.29-34
    • /
    • 2014
  • The aim of the study was to examine the cosmetic and biological activity of Lagerstroemia indica L. and it is possible that can be used as a cosmetic ingredient for application of cosmetic industries. Lagerstroemia indica L. branch was extracted with 70% acetone in water. In the result of DPPH (1,1-diphenyl-2-picryl-hydrazyl) scavenging radical activity, acetone extract of Lagerstroemia indica L. branch were higher than 73% at the 50 ppm concentration. ABTS radical cation decolorization activity by acetone extract were higher than 78% at the 50 ppm. Both examine of DPPH and ABTS showed high antioxidative activities at the 50 ppm. In the result of nitrite scavenging ability, acetone extract were higher than 63% at the 50 ppm. Collagenase inhibition activity by extract were higher than 85% at the 50 ppm. Extract is showed high collagenase inhibition more than comparison group EGCG at all concentration. These results suggest that Lagerstroemia indica L. has a great potential as a cosmeceutical raw material as well as anti-oxidant and anti-inflammatory and collagenase inhibition activity.

Biodegradation of triphenyl methane dyes by white rot fungus, Trametes versicolor (Trametes versicolor 의한 triphenyl methane계 염료의 분해)

  • Baek, Seung-A;Choi, Jaehyuk;Lee, Tae-Soo;Im, Kyung-Hoan
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.63-67
    • /
    • 2015
  • White rot fungi produce lignin-degrading enzymes such as laccase, manganese peroxidase and lignin peroxidase. These extracellular oxidases efficiently degrade recalcitrant synthetic dyestuffs with diverse chemical structures. Here, we examined the activities of lignin-degrading enzymes in Trametes versicolor using triphenyl methane dyes, crystal violet (CV) and malachite green (MG). Both dyes were decolorized by T. versicolor in solid and liquid culture conditions. T. versicolor decolorized MG more quickly than CV in both conditions. Among three ligninolytic enzymes, laccase was most abundantly found in the decolorization processes of CV and MG. However, higher activity of laccase was needed to degrade CV than MG. The much less activity of MnP was also detected. But the increase of MnP activity was well corresponded to the decolorization efficiency of CV, suggesting the involvement of MnP in CV degrading process. However, its role in the degradation process of MG is supposed to be subsidiary to laccase.

Kinetic Properties of Manganese Peroxidase from the Mushroom Stereum ostrea and its Ability to Decolorize Dyes

  • Praveen, K.;Usha, K.Y.;Viswanath, Buddolla;Reddy, B. Rajasekhar
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1540-1548
    • /
    • 2012
  • Manganese peroxidase (MnP) was isolated from the culture filtrate of the wood log mushroom Stereum ostrea (S. ostrea), grown on Koroljova medium, and then purified by ammonium sulfate [70% (w/v)] fractionation, DEAE-cellulose anion exchange chromatography, and Sephadex G-100 column chromatography, with an attainment of 88.6-fold purification and the recovery of 22.8% of initial activity. According to SDS-PAGE the molecular mass of the MnP was 40 kDa. The optimal pH and temperature were found to be 4.5 and $35^{\circ}C$, respectively. The enzyme was stable even after exposure to a pH range of 4.5 to 6.0, and at temperatures of up to $35^{\circ}C$ at a pH of 4.5 for 1h. The $K_m$ and $V_{max}$ values for the substrate phenol red were found to be $8{\mu}m$ and 111.14 U/mg of protein, respectively. The MnP also oxidized other substrates such as guaiacol, DMP, and veratryl alcohol. Sodium azide, EDTA, SDS, $Cu^{2+}$, and $Fe^{2+}$, at 1-5 mM, strongly inhibited enzyme activity, whereas $Ca^{2+}$ and $Zn^{2+}$ increased enzyme activity. The participation of the purified enzyme in the decolorization of dyes suggests that S. ostrea manganese peroxidase could be effectively employed in textile industries.

Induction of Laccase from Wood-Rotting Fungi with 2,5-Xylidine (2,5-Xylidine을 이용한 목재부후균으로부터 Laccase 효소의 유도)

  • Cho, Nam-Seok;Kim, Y.S.;Pang, M.H.;Choi, Y.J.;Nam, J.H.;Leonowicz, A.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.41-47
    • /
    • 1998
  • Some white-rot fungi, screened at the Laboratory of Forest Products Microbiological Chemistry, Chungbuk National University were cultured and added the inducer of laccase enzyme, 2,5-xylidine. The fungi named by CB-13, CB-20, CB-99, CB-100 and CB-123 strains showed positive results in the decolorization of aromatic compounds, carminic acid and Rhemazol brilliant blue R. Concerned to the inducing effect of 2,5-xylidine on laccase activity, CB-20, CB-100 and CB-123 strains showed very high activity by addition of 2,5-xylidine, whilst CB-13, CB-99 and CB-124 strains produced relatively high laccase enzymes, regardless of inducer addition. There were no any laccase activities on CB-25, CB-64 and CB-139, even in addition of inducer. It is confirmed that some screened fungi have decolorizing ability on aromatic compounds, carminic acid and Rhemazol brilliant blue R. Also, the addition of inducer, 2,5-xylidine, has increased the activity of laccase enzyme which is secreted from some white-rot fungi.

  • PDF

Identification of Clostridium perfringens AB&J and Its Uptake of Bromophenol Blue

  • Kim, Jeong-Dong;An, Hwa-Yong;Yoon, Jung-Hoon;Park, Yong-Ha;Fusako Kawai;Jung, Chang-Min;Kang, Kook_-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.544-552
    • /
    • 2002
  • Several microorganisms from rat and human feces and lumen fluid of cows were screened for their ability to decolorize the synthetic dyes. Consequently, a novel dye-degrading strain AB&J was isolated. Taxonomic identification including 165 rDNA sequencing and phylogenetic analysis indicated that the isolate had 99.9% homology in its 165 rDNA base sequence with Clostridium perfringens. After 27 h Incubation with the strain, brilliant blue R, bromophenol blue, crystal violet, malachite green, methyl green, and methyl orange were decolorized by about 69.3%, 97.7%, 96.3%, 97.9%, 75.1%, and 97.2%, respectively. The triphenlmethane dye, bromophenol blue, was decolorized extensively by growing Clostridium perfringens AB&J cells in liquid cultures under anaerobic condition, although their growth was strongly inhibited in the initial stage of incubation. This group of dyes is toxic, depending on the concentration used. The dye was significantly decolorized at a relatively lower concentration of below 50 $\mu g \;ml^{-1}$, however, the growth of the cells was mostly suppressed at a dye concentration of 100 $\mu g \;ml^{-1}$. The decolorization activity in cell-free extracts was much higher in cytoplasm than in periplasm and cytoplasmic membrane. Therefore, the enzyme related uptake of bromophenol blue seemed to be localized in cytoplasm. The optimal pH and temperature of bromophenol blue uptake fur decolorization activities were 7.0 and 4$0^{\circ}C$, respectively.

Multiple Tolerances and Dye Decolorization Ability of a Novel Laccase Identified from Staphylococcus Haemolyticus

  • Li, Xingxing;Liu, Dongliang;Wu, Zhaowei;Li, Dan;Cai, Yifei;Lu, Yao;Zhao, Xin;Xue, Huping
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.615-621
    • /
    • 2020
  • Laccases are multicopper oxidases with important industrial value. In the study, a novel laccase gene (mco) in a Staphylococcus haemolyticus isolate is identified and heterologously expressed in Escherichia coli. Mco shares less than 40% of amino acid sequence identities with the other characterized laccases, exhibiting the maximal activity at pH 4.0 and 60℃ with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) as a substrate. Additionally, the Mco is tolerant to a wide range of pH, heavy metal ions and many organic solvents, and it has a high decolorization capability toward textile dyes in the absence of redox mediators. The characteristics of the Mco make this laccase potentially useful for industrial applications such as textile finishing. Based on BLASTN results, mco is found to be widely distributed in both the bacterial genome and bacterial plasmids. Its potential role in oxidative defense ability of staphylococci may contribute to the bacterial colonization and survival.