DOI QR코드

DOI QR Code

Biodegradation of triphenyl methane dyes by white rot fungus, Trametes versicolor

Trametes versicolor 의한 triphenyl methane계 염료의 분해

  • Baek, Seung-A (Division of Life Sciences, Incheon National University) ;
  • Choi, Jaehyuk (Division of Life Sciences, Incheon National University) ;
  • Lee, Tae-Soo (Division of Life Sciences, Incheon National University) ;
  • Im, Kyung-Hoan (Division of Life Sciences, Incheon National University)
  • Received : 2015.01.27
  • Accepted : 2015.03.23
  • Published : 2015.03.31

Abstract

White rot fungi produce lignin-degrading enzymes such as laccase, manganese peroxidase and lignin peroxidase. These extracellular oxidases efficiently degrade recalcitrant synthetic dyestuffs with diverse chemical structures. Here, we examined the activities of lignin-degrading enzymes in Trametes versicolor using triphenyl methane dyes, crystal violet (CV) and malachite green (MG). Both dyes were decolorized by T. versicolor in solid and liquid culture conditions. T. versicolor decolorized MG more quickly than CV in both conditions. Among three ligninolytic enzymes, laccase was most abundantly found in the decolorization processes of CV and MG. However, higher activity of laccase was needed to degrade CV than MG. The much less activity of MnP was also detected. But the increase of MnP activity was well corresponded to the decolorization efficiency of CV, suggesting the involvement of MnP in CV degrading process. However, its role in the degradation process of MG is supposed to be subsidiary to laccase.

구름버섯(Trametes versicolor)은 phenolic compound인 CV와 MG를 효과적으로 탈색할 수 있었으며 고체와 액체배양 상태 모두에서 CV보다 MG를 더 효과적으로 탈색시켰다. 구름버섯에 의한 두 색소의 탈색 과정에서 phenolic compounds를 분해하는 것으로 알려진 세 가지 효소 중 laccase의 활성이 가장 높았다. MnP 역시 적은 수치지만 활성을 나타냈으며 LiP의 활성은 나타나지 않았다. 따라서 구름버섯에 의한 합성염료의 분해과정에서 laccase가 주로 사용되고 MnP는 탈색과정에서 보조적인 작용을 하는 것으로 추정된다. 그러나 CV의 경우 MnP가 활발하게 염료분해에 관여하는 것으로 판단된다. 또한 MG가 대부분 탈색되었을 때의 laccase 활성(0.16 U/mg)이 CV가 대부분 탈색되었을 때의 활성(0.23 U/mg)보다 현저하게 낮은 것으로 보아 구름버섯이 CV를 탈색시키는데 더 높은 활성의 laccase가 필요로 하는 것이 밝혀졌다. 본 실험에서 한국산 구름버섯 종의 CV와 MG 탈색능력이 확인되었으며 앞으로 한국산 구름버섯을 이용한 triphenyl methane계에 속하는 합성염료의 분해에 관한 친환경적 처리기술 개발에 도움이 될 것으로 기대된다.

Keywords

References

  1. Aust SD, Barr DP. 1994. Critical review, mechanism white rot fungi use to degrade pollutants. Environ Sci Technol. 28:78-87. https://doi.org/10.1021/es00051a724
  2. Baek SA, Cho MR, Lee TS, Im KH. 2014. Degradation of synthetic dye (Congo Red and Methylene Blue) by Trametes versicolor. Kor J Nat Conserva. 8:18-23. https://doi.org/10.11624/KJNC.2014.8.1.018
  3. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Champagne PP, Ramsay JA. 2005. Contribution of manganes peroxidase and laccase to dye decoloration by Trametes versicolor. Appl Microbiol Biotechnol. 69:276-285. https://doi.org/10.1007/s00253-005-1964-8
  5. DeSouza-Ticlo D. 2008. The lignin-degrading enzyme, laccase from marine fungi: biochemical and molecular approaches. Ph. D. Thesis. Goa.
  6. Glenn JK, Gold MH. 1985. Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys. 242:329-341. https://doi.org/10.1016/0003-9861(85)90217-6
  7. Goudopoulou A, Krimitzas A, Typas MA. 2010. Differential gene expression of ligninolytic enzymes in Pleurotus ostreatus grown on olive oil mill wastewater. Appl Microbiol Biotechnol. 88:541-551. https://doi.org/10.1007/s00253-010-2750-9
  8. Hong CY, Kim HY, Lee SY, Kim SH, Lee SM, Choi IG. 2013. Involvement of extracellular and intracellular enzymes of Ceriporia sp. ZLY-2010 for biodegradation of polychlorinated biphenyls (PCBs). J Environ Sci Health. 48:1280-1291. https://doi.org/10.1080/10934529.2013.777242
  9. Jayasinghe C, Imtiaj A, Lee GW, Im KH, Hur H, Lee MW, Yang HS, Lee TS. 2008. Degradation of three aromatic dyes by white rot fungi and the production of ligninolytic enzymes. Mycobiol. 36:114-120. https://doi.org/10.4489/MYCO.2008.36.2.114
  10. Johansson T, Nyman PO. 1987. A manganese(II)-dependent extracellular peroxidase from the white-rot fungus Trametes versicolor. Acta Chem Scand. 41:762-765.
  11. Kirtikara K, Schaich KM, Fagan JM, Frenkel C. 1995. Rapid method for preparation of pure veratryl alcohol for the assay of lignin peroxidase. J Microbiol Meth. 23:253-259. https://doi.org/10.1016/0167-7012(95)00037-L
  12. Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G. 1997. A novel white laccase from Pleurotus ostreatus. J Biol Chem. 272:31301-31307. https://doi.org/10.1074/jbc.272.50.31301
  13. Ramon GGG, Irineo TP. 2006. Advances in Agricultural and Food Biotechnology. Research Signpost. pp.334.
  14. Swamy J, Ramsay JA. 1999. Effects of $Mn^{2+}$ and $NH^{+}_{4}$ concentrations on laccase and manganese peroxidase production and Amaranth decoloration by Trametes versicolor. Appl Microbiol Biotechnol. 51:391-396. https://doi.org/10.1007/s002530051408
  15. Tien M, Kirk TK. 1988. Lignin peroxidase of Phanerochaete chrysosporium. Meth Enzymol. 161:238-249. https://doi.org/10.1016/0076-6879(88)61025-1
  16. Vyas BRM, Bakowski S, Sasek V, Matucha M. 1994. Degradation of anthracene by selected white rot fungi. FEMS Microbiol Ecol. 16:65-70.