• Title/Summary/Keyword: Decoder complexity

Search Result 350, Processing Time 0.025 seconds

Low Complexity Maximum-likelihood Decoder for VBLAST-STBC scheme using non-square O-STBC code rate $\frac{3}{4}$

  • Pham Van-Su;Le Minh-Tuan;Mai Linh;Yoon Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.107-110
    • /
    • 2006
  • This work presents a low complexity maximum-likelihood decoder for signal detection in VBLAST-STBC system, which employs non-square O-STBC code rate 3/4. By stacking received symbols from different received symbolduration and applying QR decomposition resulting the special format of upper triangular matrix R, the proposed decoder is able to provide not only ML-like BER performance but also very low computational load. The low computational load and ML-like BER performance properties of the proposed decoder are verified by computer simulations.

  • PDF

New Decoding Techniques of RS Codes for Optical Disks (광학식 디스크에 적합한 RS 부호의 새로운 복호 기법)

  • 엄흥열;김재문;이만영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.3
    • /
    • pp.16-33
    • /
    • 1993
  • New decoding algorithm of double-error-correction Reed-Solmon codes over GF(2$^{8}$) for optical compact disks is proposed and decoding algorithm of RS codes with triple-error-correcting capability is presented in this paper. First of all. efficient algorithms for estimating the number of errors in the received code words are presented. The most complex circuits in the RS decoder are parts for soving the error-location numbers from error-location polynomial, so the complexity of those circuits has a great influence on overall decoder complexity. One of the most known algorithm for searching the error-location number is Chien's method, in which all the elements of GF(2$^{m}$) are substituted into the error-location polynomial and the error-location number can be found as the elements satisfying the error-location polynomial. But Chien's scheme needs another 1 frame delay in the decoder, which reduces decoding speed as well as require more stroage circuits for the received ocode symbols. The ther is Polkinghorn method, in which the roots can be resolved directly by solving the error-location polynomial. Bur this method needs additional ROM (readonly memory) for storing tthe roots of the all possible coefficients of error-location polynomial or much more complex cicuit. Simple, efficient, and high speed method for solving the error-location number and decoding algorithm of double-error correction RS codes which reudce considerably the complexity of decoder are proposed by using Hilbert theorems in this paper. And the performance of the proposed decoding algorithm is compared with that of conventional decoding algorithms. As a result of comparison, the proposed decoding algorithm is superior to the conventional decoding algorithm with respect to decoding delay and decoder complexity. And decoding algorithm of RS codes with triple-error-correcting capability is presented, which is suitable for error-correction in digital audio tape, also.

  • PDF

A Study on the Design of Concatenated Viterbi Decoder (연접형 비터비 복호기 설계에 관한 연구)

  • Kim, Dong-Won;Jeong, Sang-Guk;Kim, Young-Ho;Rho, Seung-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2470-2472
    • /
    • 1998
  • In this paper, we proposed the method to improve the performance of Viterbi decoder by applying Concatenated structure. Proposed decoder for Concatenated Code is designed with inner Viterbi decoder, block deinterleaver and outer Viterbi decoder. Inner Viterbi decoder (K=7, R=1/2) has 8-level soft decision, but outer decoder (K=7, R= 1/2) has 2-level hard decision. Applied interleaving scheme make decoder to have better BER performance in Concatenated code. The designed VLSI shares inner decoder with outer decoder. Because of sharing structure, complexity of decoder can be reduced to half. But it required about twice clock speed.

  • PDF

High-Speed Low-Complexity Reed-Solomon Decoder using Pipelined Berlekamp-Massey Algorithm and Its Folded Architecture

  • Park, Jeong-In;Lee, Ki-Hoon;Choi, Chang-Seok;Lee, Han-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.3
    • /
    • pp.193-202
    • /
    • 2010
  • This paper presents a high-speed low-complexity pipelined Reed-Solomon (RS) (255,239) decoder using pipelined reformulated inversionless Berlekamp-Massey (pRiBM) algorithm and its folded version (PF-RiBM). Also, this paper offers efficient pipelining and folding technique of the RS decoders. This architecture uses pipelined Galois-Field (GF) multipliers in the syndrome computation block, key equation solver (KES) block, Forney block, Chien search block and error correction block to enhance the clock frequency. A high-speed pipelined RS decoder based on the pRiBM algorithm and its folded version have been designed and implemented with 90-nm CMOS technology in a supply voltage of 1.1 V. The proposed RS(255,239) decoder operates at a clock frequency of 700 MHz using the pRiBM architecture and also operates at a clock frequency of 750 MHz using the PF-RiBM, respectively. The proposed architectures feature high clock frequency and low-complexity.

Low-Complexity Multi-Size Circular Shifter for QC-LDPC Decoder Based on Two Serial Barrel-Rotators (두 개의 직렬 Barrel-Rotator를 이용한 QC-LDPC 복호기용 저면적 Multi-Size Circular Shifter)

  • Kang, Hyeong-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1839-1844
    • /
    • 2015
  • The low-density parity-check(LDPC) code has been adopted in many communication standards due to its error correcting performance, and the quasi-cyclic LDPC(QC-LDPC) is widely used because of implementation easiness. In the QC-LDPC decoder, a cyclic-shifter is required to rotate data in various sizes. This kind of cyclic-shifters are called multi-size circular shifter(MSCS), and this paper proposes a low-complexity structure for MSCS. In the conventional serially-placed two barrel-rotators, the unnecessary multiplexers are revealed and removed, leading to low-complexity. The experimental results show that the area is reduced by about 12%.

Error Control Scheme for High-Speed DVD Systems

  • Lee, Joon-Yun;Lee, Jae-Jin;Park, Tae-Geun
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.103-110
    • /
    • 2005
  • We present a powerful error control decoder which can be used in all of the commercial DVD systems. The decoder exploits the error information from the modulation decoder in order to increase the error correcting capability. We can identify that the modulation decoder in DVD system can detect errors more than $60\%$ of total errors when burst errors are occurred. In results, fur a decoded block, error correcting capability of the proposed scheme is improved up to $25\%$ more than that of the original error control decoder. In addition, the more the burst error length is increased, the better the decoder performance. Also, a pipeline-balanced RSPC decoder with a low hardware complexity is designed to maximize the throughput. The maximum throughput of the RSPC decoder is 740Mbps@100MHz and the number of gate counts is 20.3K for RS (182, 172, 11) decoder and 30.7K for RS (208, 192, 17) decoder, respectively

  • PDF

MPEG-H 3D Audio Decoder Structure and Complexity Analysis (MPEG-H 3D 오디오 표준 복호화기 구조 및 연산량 분석)

  • Moon, Hyeongi;Park, Young-cheol;Lee, Yong Ju;Whang, Young-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.432-443
    • /
    • 2017
  • The primary goal of the MPEG-H 3D Audio standard is to provide immersive audio environments for high-resolution broadcasting services such as UHDTV. This standard incorporates a wide range of technologies such as encoding/decoding technology for multi-channel/object/scene-based signal, rendering technology for providing 3D audio in various playback environments, and post-processing technology. The reference software decoder of this standard is a structure combining several modules and can operate in various modes. Each module is composed of independent executable files and executed sequentially, real time decoding is impossible. In this paper, we make DLL library of the core decoder, format converter, object renderer, and binaural renderer of the standard and integrate them to enable frame-based decoding. In addition, by measuring the computation complexity of each mode of the MPEG-H 3D-Audio decoder, this paper also provides a reference for selecting the appropriate decoding mode for various hardware platforms. As a result of the computational complexity measurement, the low complexity profiles included in Korean broadcasting standard has a computation complexity of 2.8 times to 12.4 times that of the QMF synthesis operation in case of rendering as a channel signals, and it has a computation complexity of 4.1 times to 15.3 times of the QMF synthesis operation in case of rendering as a binaural signals.

High-Speed Low-Complexity Two-Bit Level Pipelined Viterbi Decoder for UWB Systems (UWB시스템을 위한 고속 저복잡도 2-비트 레벨 파이프라인 비터비 복호기 설계)

  • Goo, Yong-Je;Lee, Han-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.125-136
    • /
    • 2009
  • This paper presents a high-speed low-complexity two-bit level pipelined Viterbi decoder architecture for MB-OFDM UWB systems. As the add-compare-select unit (ACSU) is the main bottleneck of the Viterbi decoder, this paper proposes a novel two-bit level pipelined MSB-first ACSU, which is based on 2-step look-ahead techniques to reduce the critical path. The proposed ACSU architecture requires approximately 12% fewer gate counts and 9% faster speed than the conventional MSB-first ACSU. The proposed Viterbi decoder was implemented with $0.18-{\mu}m$ CMOS standard cell technology and a supply voltage of 1.8V. It operates at a clock frequency of 870 MHZ and has a throughput of 1.74 Gb/s.

Deblocking Filter for Low-complexity Video Decoder (저 복잡도 비디오 복호화기를 위한 디블록킹 필터)

  • Jo, Hyun-Ho;Nam, Jung-Hak;Jung, Kwang-Su;Sim, Dong-Gyu;Cho, Dae-Sung;Choi, Woong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.32-43
    • /
    • 2010
  • This paper presents deblocking filter for low-complexity video decoder. Baseline profile of the H.264/AVC used for mobile devices such as mobile phones has two times higher compression performance than the MPEG-4 Visual but it has a problem of serious complexity as using 1/4-pel interpolation filter, adaptive entropy model and deblocking filter. This paper presents low-complexity deblocking filter for decreasing complexity of decoder with preserving the coding efficiency of the H.264/AVC. In this paper, the proposed low-complexity deblocking filter decreased 49% of branch instruction than conventional approach as calculating value of BS by using the CBP. In addition, a range of filtering of strong filter applied in intra macroblock boundaries was limited to two pixels. According to the experimental results, the proposed low-complexity deblocking filter decreased -0.02% of the BDBitrate comparison with baseline profile of the H.264/AVC, decreased 42% of the complexity of deblocking filter, and decreased 8.96% of the complexity of decoder.

Selective B Slice Skip Decoding for Complexity Scalable H.264/AVC Video Decoder (H.264/AVC 복호화기의 복잡도 감소를 위한 선택적 B 슬라이스 복호화 스킵 방법)

  • Lee, Ho-Young;Kim, Jae-Hwan;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.79-89
    • /
    • 2011
  • Recent development of embedded processors makes it possible to play back video contents in real-time on portable devices. Because of their limited battery capacity and low computational performance, however, portable devices still have significant problems in real-time decoding of high quality or high resolution compressed video. Although previous approaches are successful in achieving complexity-scalable decoder by controlling computational complexity of decoding elements, they cause significant objective quality loss coming from mismatch between encoder and decoder. In this paper, we propose a selective B slice skip-decoding method to implement a low complexity video decoder. The proposed method performs selective skip decoding process of B slice which satisfies the proposed conditions. The skipped slices are reconstructed by simple reconstruction method utilizing adjacent reconstructed pictures. Experimental result shows that proposed method not only reduces computational complexity but also maintains subjective visual quality.