• Title/Summary/Keyword: Decode-and-Forward Relaying

Search Result 85, Processing Time 0.022 seconds

Outage Capacity Analysis for Cooperative DF and AF Relaying in Dissimilar Rayleigh Fading Channels

  • Shrestha, Suchitra;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.361-370
    • /
    • 2008
  • Cooperative relaying permits one or more relay to transmit a signal from the source to the destination, thereby increasing network coverage and spectral efficiency. The performance of cooperative relaying is often measured as outage probability. However, appropriate measure for the channel quality is outage capacity. Although the outage probability for cooperative relaying protocol has been analyzed before, very little research has been addressed for the outage capacity. This paper is the first of its kind to derive a closed-form analytical solution of outage capacity using fixed decode and forward relaying and amplify and forward relaying in dissimilar Rayleigh fading channels, considering channel coefficients known to the receiver side. The analytical results show a tradeoff between the SNR and the number of relays for specific outage capacity. A comparison between decode and forward relaying and amplify and forward relaying shows that decode and forward relaying outperforms amplify and forward relaying for a large number of relays.

Exact and Approximate Symbol Error Probability of cooperative systems with best relay selection and all participating relaying using Amplify and Forward or Decode and Forward Relaying over Nakagami-m fading channels

  • Halima, Nadhir Ben;Boujemaa, Hatem
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.81-108
    • /
    • 2018
  • In this paper, we derive the theoretical Symbol Error Probability (SEP) of cooperative systems with best relay selection for Nakagami-m fading channels. For Amplify and Forward (AF) relaying, the selected relay offers the best instantaneous Signal to Noise Ratio (SNR) of the relaying link (source-relay-destination). In cooperative networks using Decode and Forward (DF), the selected relay offers the best instantaneous SNR of the link between the relay and the destination among the relays that have correctly decoded the transmitted information by the source. In the second part of the paper, we derive the SEP when all participating AF and DF relaying is performed. In the last part of the paper, we extend our results to cognitive radio networks where there is interference constraints : only relays that generate interference to primary receiver lower than a predefined threshold T can transmit. Both AF and DF relaying with and without relay selection are considered.

Comparison of Outage Probability Between Best-relay 2-hop Relaying and 3-hop Relaying (두 릴레이가 존재할 때 삼중 홉 중계와 베스트 릴레이 선택 후 이중 홉 중계 방식의 아웃티지 확률 비교)

  • Youn, You-Sun;Kim, Dong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.136-143
    • /
    • 2010
  • In this paper, we investigate decode-and-forward (DF) relaying systems with a direct link between the source and the destination node. The objective of this paper is to determine the better relaying strategy between 3-hop DF relaying and dual-hop DF relaying with the best relay selection. Assuming Rayleigh fading channels, we present closed-form outage probability of the 3-hop relaying and the dual-hop relaying, respectively, and compare the performances by numerical investigation. Numerical results show that if the channel is poor, the outage performance of the 3-hop relaying is better than the dual-hop relaying.

Performance Analysis of Decode-and-Forward Relaying Based on Optimal Relay Selection (디코딩 후 전달방식에서 최적의 중계노드 선택방법에 대한 링크레벨 성능분석)

  • Lee, In-Ho;Kim, Dong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1A
    • /
    • pp.36-43
    • /
    • 2008
  • In this paper, we propose an optimal relay selection scheme for decode-and-forward relaying systems. The optimal relay selection minimizes the number of time slots used to relay source's signal and maximizes an end-to-end signal-to-noise ratio. However, decode-and-forward relaying systems require additional overhead for the optimal relay selection. Assuming independent and identically distributed Rayleigh fading channels, we provide exact and closed-form expressions for the outage probability of capacity and the bit error rate for decode-and-forward relaying systems with the optimal relay selection. It is shown that the analytic results are perfectly matched with the simulated ones. When the numbers of relay nodes are 2, 4, and 8, and the numbers of time slots for overhead are 1, 2, and 4, respectively, the proposed system achieves 1 dB, 2 dB, and 3 dB gains at 1% bit error rate, respectively, and 0.5 dB, 4 dB, and 12 dB gains at 1% outage probability for 1 bps/Hz, respectively, over the conventional decode-and-forward relaying system.

Performance Analysis of Multi-Hop Decode-and-Forward Relaying with Selection Combining

  • Bao, Vo Nguyen Quoe;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.616-623
    • /
    • 2010
  • In this paper, exact closed-form expressions for outage probability and bit error probability (BEP) are presented for multi-hop decode-and-forward (DF) relaying schemes in conjunction with cooperative diversity, in which selection combining technique is employed at each node. We have shown that the proposed protocol offers remarkable diversity advantage over direct transmission as well as the conventional DF relaying schemes with the same combining technique. We then investigate the system performance when different diversity schemes are employed. It has been observed that the system performance loss due to selection combining relative to maximal ratio combining is not significant. Simulations are performed to confirm our theoretical analysis.

Performance Analysis of Hybrid Decode-Amplify-Forward Incremental Relaying Cooperative Diversity Protocol Using SNR-Based Relay Selection

  • Tran, Trung Duy;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.703-709
    • /
    • 2012
  • In this paper, we propose a hybrid decode-amplify-forward incremental cooperative diversity protocol using SNR-based relay selection. In the proposed protocol, whenever destination unsuccessfully receives the source's signal, one of relays that exploit hybrid decode-amplify-forward technique is chosen to retransmit the signal. We derive approximate closed-form expressions of outage probability and average channel capacity. Monte-Carlo simulations are presented to verify the theoretical results and compare the performance of the proposed protocol with the direct transmission protocol and conventional incremental relaying protocols.

Decode-and-Forward Relaying Systems with Nth Best-Relay Selection over Rayleigh Fading Channels

  • Duy, Tran Trung;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.8-12
    • /
    • 2012
  • In this paper, we evaluate performances of dual-hop decode-and-forward relaying systems with the $N^{th}$ best-relay selection scheme. In some schemes, such as scheduling or load balancing schemes, the best relay is unavailable and hence the system must resort the second best, third best, or generally the $N^{th}$ best relay. We derive the expressions of the outage probability and symbol error rate (SER) for this scenario over Rayleigh fading channels. Monte-Carlo simulations are presented to verify the analytical results.

On Performance Evaluation of Hybrid Decode-Amplify-Forward Relaying Protocol with Partial Relay Selection in Underlay Cognitive Networks

  • Duy, Tran Trung;Kong, Hyung Yun
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.502-511
    • /
    • 2014
  • In this paper, we evaluate performance of a hybrid decode-amplify-forward relaying protocol in underlay cognitive radio. In the proposed protocol, a secondary relay which is chosen by partial relay selection method helps a transmission between a secondary source and a secondary destination. In particular, if the chosen relay decodes the secondary source's signal successfully, it will forward the decoded signal to the secondary destination. Otherwise, it will amplify the signal received from the secondary source and will forward the amplified signal to the secondary destination. We evaluate the performance of our scheme via theory and simulation. Results show that the proposed protocol outperforms the amplify-and-forward and decode-and-forward protocols in terms of outage probability.

Study on Relaying Path Selection Using One-Hop Channel Information in Decode-and-Forward Relaying Based Multi-Hop Systems (디코딩 후 전달 중계 기반 다중 홉 시스템에서 하나의 홉 채널 정보를 이용하는 중계 경로 선택 기법 연구)

  • Lee, In-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.87-95
    • /
    • 2013
  • In this paper, the outage probability of efficient partial relay selection(EPRS) using only one-hop channel information in multi-hop systems is analyzed in Rayleigh fading channels. In particular, we derive an exact and closed-form expression for the outage probability of decode-and-forward relaying based EPRS. In order to prove the usefulness of EPRS in multi-hop systems, we also analyze the correlation between the end-to-end signal-to-noise ratio(SNR) and the SNR for each hop at an arbitrary relaying path. Furthermore, through numerical investigation, we compare the outage performances for EPRS and the best relay selection using all channel information.