• Title/Summary/Keyword: Deck plate

Search Result 280, Processing Time 0.029 seconds

Fatigue Characteristics of Precast Concrete Bridge Decks under Wheel Load Condition (윤하중조건에서의 프리캐스트 콘크리트 바닥판 피로특성)

  • Joo, Bong-Chul;Park, Hung-Seok;Kim, Young-Jin;Song, Jae-Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.394-397
    • /
    • 2006
  • For checking fatigue safety and endurance of precast concrete deck and loop joint system in the steel plate girder composite bridge, the test composite bridge model was made for the fatigue experiment by the wheel load machine. The fatigue tests of 1,000,000 cycles were implemented according to wheel load condition of DB24 rear axle of Korea Highway Design Code. From the test results, the loop joint system for the precast deck has a sufficient flexural capacity. Although a little lower longitudinal continuity capacity is evaluated than general sound cast-in-place RC bridge deck, there is no problem about the safety. The overall fatigue level of safety defined by the code is satisfied.

  • PDF

An Experimental Study on the Flexural Behavior of Deck Plates with Metal Lath and Mortar (라스와 모르타르를 이용한 데크의 휨거동에 관한 실험적 연구)

  • Kim, Sung-Bae;Kim, Sung-Jin;Seo, Dong-Min;Kim, Sang-Seup
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.117-125
    • /
    • 2008
  • In the domestic construction industry field nowadays, the usage of deck plates is currently increasing due to the lack of construction workers and the rised in construction cost. However, using deck plates manufactured by thin zinc galvanization in underground structures is criticised because it can lead to increase in maintenance cost caused by rust generation and water leakage. As a solution for this particular problem, deck plates created by Lath and Mortar instead of zinc galvanized steel sheets were developed. This paper deals with the experimental study on flexural behavior of deck plate using metal lath and mortar. Seventeen fullscale specimens were constructed and tested with different type of truss, the diameter of the top and bottom bar, and the thickness of slab. Tests results show that LAMO deck displayed equal performance such as zinc galvanized steel sheets.

Design and Construction of Twin Steel Girder Bridge using the Precast Concrete Full depth deck (프리캐스트 바닥판을 적용한 소수거더교의 설계 및 시공)

  • Kim, In-Gyu;Ma, Hyang-Wook;Oh, Hyun-Chul;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.137-140
    • /
    • 2008
  • Minimizing the girder number and appling the long span deck of plate girder bridge is the main factors in the practical and economic design of the Twin Steel Girder Bridge. Therefore, it is important to verify the ability of the long span concrete deck. In this paper, to improve the problem, the precast concrete full depth deck has been used instead of cast-in-place concrete deck. The precast concrete full depth deck having longitudinal and transverse prestress is efficient to design of the long span concrete slabs. This paper introduces the design concept of Twin Steel Bridge using the precast concrete full depth deck and applied design case.

  • PDF

Improvement of Flexural Performance for Deep-Deck Plate using Cap Plate (캡플레이트를 이용한 장스팬용 춤이 깊은 데크의 휨성능 개선)

  • Park, K.Y.;Nam, Y.S.;Choi, Y.H.;Kim, Y.H.;Choi, S.M.
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.555-567
    • /
    • 2013
  • Slim floor system using deep decks has been developed and employed in Europe to reduce the floor height of steel structures. Although long span buildings involving the issue of reducing floor height are being increasingly built in Korea, employing deep decks in more than 7m long span structures is likely to cause problems associated with excessive deflection. This study is applied to the long-span concrete casting of the deep deck plate usability of deflection due to bending and torsional instability of open cross-section, as a way to improve the problem of cap plates are suggested, and the optimum length of reinforcement and location are derived from theoretic estimation. The cap plates are placed on the deep decks with regular intervals to overcome the instability of open sections, improve the stiffness of the sections and control the deflection at the centers. The improvement in flexural capacity associated with the location of the cap plates and the length of reinforcement are verified through analysis and test.

Development for Connection Details between Flat Plate Slab and H-Steel Column (무량판 슬래브와 H형강 기둥 접합부 상세 개발)

  • Yoon, Myung-Ho;Lee, Yoon-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • The flat plate slab system have many good features, which are design flexibilities, saving of story-height and economy of construction etc. But the study of flat plate slab system for H-steel column have been rare both at home and abroad. Recently high-rise residential and commercial buildings have been constructed in urban areas in Korea. The suggested dowel connection system is more likely to adoptable because it remarkably contribute to save inter story height and also to have many advantages compared with conventional steel works such as H-Steel frame + Deck plate slab system. This study aims at developing design method and program for connection between H-Steel column and flat plate slab system, which contribute to save significantly inter-story height.

Development of Live Load Moment Equations Using Orthotropic Plate Theory (직교 이방성 판 이론을 이용한 바닥판 활하중 모멘트 산정식 개발)

  • Ahn Ye-Jun;Nam Suk-Hyun;Park Jang-Ho;Shin Yung-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.749-756
    • /
    • 2006
  • Because of the orthotropic elastic properties and significant two-way bending action, orthotropic plate theory may be suitable for describing the behavior of concrete filled grid bridge decks. Current AASHTO LRFD Bridge Design Specification(2004) has live load moment equations considering flexural rigidity ratio between longitudinal and transverse direction, but the Korea highway bridge design specification(2005) doesn't. The Korea highway bridge standard specification LRFD(1996) considers an orthotropic plate model with a single load to estimate live load moments in concrete filled grid bridge decks, which may not be conservative. This paper presents live load moment equations for truck and passenger car, based on orthotropic plate theory. The equations of truck model use multiple presence factor, impact factor, design truck and design tandem of the Korea highway bridge standard specification LRFD(1996). The estimated moments are verified through finite-element analyses.

  • PDF

Dynamic Response of Steel Plate Girder Bridges by Numerical Dynamic Analysis (동적해석에 의한 강판형교의 동적응답)

  • Chung, Tae Ju;Shin, Dong-Ku;Park, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.39-49
    • /
    • 2008
  • Dynamic responses of steel plate girder bridges considering road surface roughness of bridge and bridge-vehicle interaction are investigated by numerical analysis. Simply supported steel plate girder bridges with span length of 20 m, 30 m, and 40 m from "The Standardized Design of Highway Bridge Superstructure" published by the Korean Ministry of Construction are used for bridge model and the road surface roughness of bridge decks are generated from power spectral density(PSD) function for different road. Three different vehicles of 2- and 3-axle dump trucks, and 5-axle tractor-trailer(DB-24), are modeled three dimensionally. For the bridge superstructure, beam elements for the main girder, shell elements for concrete deck, and rigid links between main girder and concrete deck are used. Impact factor and DLA of steel plate girder bridges for different spans, type of vehicles and road surface roughnesses are calculated by the proposed numerical analysis model and compared with those specified by several bridge design codes.

A Study on the Dynamic Characteristics of Composite Deck Plate According to the Modification of Boundary Conditions (경계조건의 조절에 따른 합성 데크플레이트 슬래브의 거동특성에 관한 연구)

  • 김우영;정은호;엄철환;김희철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.371-376
    • /
    • 1998
  • As the requirement of high-rise buildings in big cities increases, steel structural system becomes more popular in spite of the relatively higher material cost compared to that of the concrete structural system. Most of the steel structure adopts metal deck floor system because of the easiness in construction. However, the metal deck floor system has a weakness on vibration which became very important factor in office buildings, hotels and residential buildings as the more sensitive machines being used. Therefore, most, of the building codes in many countries restrict the natural frequency of the each floor should be higher than or equal to 15 Hz. Floor vibration of the KEM deck composite floor system which has been , developed recently from the engineers and scientists in Korea was measured. Also, the simplified analytical derivation of natural frequency for each floor was studied according to the measured natural frequency for each different boundary condition of the floor. As the length of the slab gets bigger, the natural frequency of the slab becomes lower even though the structural designer still considers it as a one-way slab.

  • PDF

Field Application of Surface Insulation Curing Method to Cold Weather Concreting (한중콘크리트의 현장 표면단열 양생공법 시공사례 연구)

  • Kim Jong-Back;Lim Choon-Goun;Han Min-Cheol;Kim Seoung-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.25-28
    • /
    • 2005
  • This study investigates the field application of surface insulation curing method, which combined double layer bubble sheet(DBS) and thick-curing-material(TCM) for cold weather concreting. According to the test, deck slab, curing only upper section with DBS and TCM, does not make big different temperature history with that, curing both upper and bottom section during daily average temperature 6.5t. It is concluded that combination of DBS and TCM in only upper section can be safely cured in early period of time during cold water concreting. The field test was carried out with this favourable data. The upper deck slab was insulated by combination of DBS and TCM, and the construction was surrounded by tent. in order to protect from outside wind. The test result shows that the lowest temperature of deck slab indicated 6$ ^{circ}C $. It demonstrated that this curing method can resist early frost and save construction cost in the side of management and saving labor cost, compared with previous method. In addition, the column specimen, combined both form and bubble board, exhibited favorable temperature history, due to internal hydration heat insulation effect.

  • PDF

An Estimation of Panel Deflection at Engine Room Upper Deck for the Ship Under Construction (건조중인 선박에서의 기관실 상갑판 판부재의 처짐 예측)

  • Juh-H. Ham;Ul-N. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.119-128
    • /
    • 1994
  • Deflection estimation at engine room upper deck panel is performed for the actual ship structure. These deflection behaviours are basically investigated from not only the data based on the full series results of nonlinear analysis using Incremental Galerkin's Method but also actual deflection data measured from damaged ship under construction in dry dock. The effects of residual stress, initial deflection and static loading are also included. The computed estimation results of upper deck plate panel including theme effects are shown that upper deck platings of new ship expected less deflection magnitude than damaged ship.

  • PDF