Stroke is the leading cause of permanent disability in adults, and it can cause permanent brain damage. According to the World Health Organization, 795 000 Americans experience a new or recurrent stroke each year. Early detection of medical disorders, for example, strokes, can minimize the disabling effects. Thus, in this paper, we consider various risk factors that contribute to the occurrence of stoke and machine learning algorithms, for example, the decision tree, random forest, and naive Bayes algorithms, on patient characteristics survey data to achieve high prediction accuracy. We also consider the semisupervised self-training technique to predict the risk of stroke. We then consider the near-miss undersampling technique, which can select only instances in larger classes with the smaller class instances. Experimental results demonstrate that the proposed method obtains an accuracy of approximately 98.83% at low cost, which is significantly higher and more reliable compared with the compared techniques.
Purpose - In this study, we propose an empirical model for predicting seasoned equity offering (SEO here after) using machine learning methods. Design/methodology/approach - The models utilize the random forest method based on decision trees that considers non-linear relationships, as well as the gradient boosting tree model. SEOs incur significant direct and indirect costs. Therefore, CEOs' decisions of seasoned equity issuances are made only when the benefits outweigh the costs, which leads to a non-linear relationship between SEOs and a determinant of them. Particularly, a variable related to market timing effectively exhibit such non-linear relations. Findings - To account for these non-linear relationships, we hypothesize that decision tree-based random forest and gradient boosting tree models are more suitable than the linear methodologies due to the non-linear relations. The results of this study support this hypothesis. Research implications or Originality - We expect that our findings can provide meaningful information to investors and policy makers by classifying companies to undergo SEOs.
The purpose of this study is to provide the basic information for the early enforcement and extension of the improvement project of management scale of private forest land by understanding the characteristics of forest owners, who have an influence on the participation of the project as one of the private forest management vitalization plans. To achieve this goal, a questionnaire survey targeting 373 forest owners was conducted and analyzed by Binary-Logistic Regression. The variables for binary-logistic regression included gender, age, academic ability, occupation, income, residence, purpose of forest ownership, and status of cooperative membership. As a result of the analysis, 267 forest owners (71.6%) of total 373 forest owners have the intention to participate in the scaling project for private forest management. The rest of forest owners (106 forest owners, 28.4%) would not be willing to participate in the project. As a result of binary-logistic regression, the most important variables, which have an impact on the participation of private forest management scale improvement project, are age, job and forest own purpose.
Journal of the Korean Society of Environmental Restoration Technology
/
v.25
no.5
/
pp.43-57
/
2022
This study aims to classify forest fire-affected areas, identify forest types by the intensity of forest fire damage using multi-time Landsat-satellite images before and after forest fires and to analyze the effects of artificial restoration sites and natural restoration sites. The difference in the values of the Normalized Burned Ratio(NBR) before and after forest fire damage not only maximized the identification of forest fire affected and unaffected areas, but also quantified the intensity of forest fire damage. The index was also used to confirm that the higher the intensity of forest fire damage in all forest fire-affected areas, the higher the proportion of coniferous forests, relatively. Monitoring was conducted after forest fires through Normalized Difference Vegetation Index(NDVI), an index suitable for the analysis of effects by restoration type and the NDVI values for artificial restoration sites were found to no longer be higher after recovering the average NDVI prior to the forest fire. On the other hand, the natural restoration site witnessed that the average NDVI value gradually became higher than before the forest fires. The study result confirms the natural resilience of forests and these results can serve as a basis for decision-making for future restoration plans for the forest fire affected areas. Further analysis with various conditions is required to improve accuracy and utilization for the policies, in particular, spatial analysis through forest maps as well as review through site checks before and immediately after forest fires. More precise analysis on the effects of restoration will be available based on a long term monitoring.
Forest ecosystem provides variety goods and services for human being. Unlike goods, forest ecosystem services could not be easily priced by market mechanism. This uncertainty has been caused to conflict in decision-making related forest ecosystem services. Quantification of forest ecosystem services is required to understand the importance of ecosystem services and their contribution to decision-making. As a growing concern of climate change, it is necessary to quantify and calculate carbon storage and sequestration in forest. In this study, for quantifying carbon storage and sequestration, we compared scale, output, input data availability of the models and analyzed the applicability of the models to Korea. The results of this study show that most models are applicable for quantifying carbon storage and sequestration. However, relatively few models are applicable for other regulating services (air quality regulation, flood mitigation, erosion control, water quality, etc.) of forest. This study would be helpful for quantifying regulating services of forest ecosystem research.
To mitigate forest fire damage, it is needed to concentrate suppression resources on the fire having a high probability to become large in the initial stage. The objective of this study is to develop the large fire judgement model which can estimate large fire possibility index between the fire size and the related factors such as weather, terrain, and fuel. The results of logistic regression equation indicated that temperature, wind speed, continuous drought days, slope variance, forest area were related to the large fire possibility positively but elevation has negative relationship. This model may help decision-making about size of suppression resources, local residents evacuation and suppression priority.
The model and its example were provided to predict wood production for a district forest planning. The method of Gentan probability is widely accepted for the prediction of wood production. The suggested model is different in the decision of cutting age distribution from that of Prof. Suzuki; the former can use either Weibull distribution or Gamma distribution, but the latter is possible only by Gamma distribution. This developed system can be used not only for establishing a district forest planning, but also for providing forest management information, such as periodic harvest volume, growing stock, labor requirement, and so forth.
The Journal of Korean Institute of Communications and Information Sciences
/
v.38A
no.1
/
pp.1-9
/
2013
This paper propose a human action recognition method that uses bag-of-features (BoF) based on CS-LBP (center-symmetric local binary pattern) and a spatial pyramid in addition to the random forest classifier. To construct the BoF, an image divided into dense regular grids and extract from each patch. A code word which is a visual vocabulary, is formed by k-means clustering of a random subset of patches. For enhanced action discrimination, local BoF histogram from three subdivided levels of a spatial pyramid is estimated, and a weighted BoF histogram is generated by concatenating the local histograms. For action classification, a random forest, which is an ensemble of decision trees, is built to model the distribution of each action class. The random forest combined with the weighted BoF histogram is successfully applied to Standford Action 40 including various human action images, and its classification performance is better than that of other methods. Furthermore, the proposed method allows action recognition to be performed in near real-time.
This study was conducted to detect metabolic syndrome risk factors and gender difference in adults. 18,616 cases of adults are collected by Korea Health and Nutrition Examination Study from 2016 to 2019. Using 4 types of machine Learning(Logistic Regression, Decision Tree, Naïve Bayes, Random Forest) to predict Metabolic Syndrome. The results showed that the Random Forest was superior to other methods in men and women. In both of participants, BMI, diet(fat, vitamin C, vitamin A, protein, energy intake), number of underlying chronic disease and age were the upper importance. In women, education level, menarche age, menopause was additional upper importance and age, number of underlying chronic disease were more powerful importance than men. Future study have to verify various strategy to prevent metabolic syndrome.
This paper presents a fast partition decision framework for High Efficiency Video Coding (HEVC) Screen Content Coding (SCC) based on machine learning. Currently, the HEVC performs quad-tree block partitioning process to achieve optimal coding efficiency. Since this process requires a high computational complexity of the encoding device, the fast encoding process has been studied as determining the block structure early. However, in the case of the screen content video coding, it is difficult to apply the conventional early partition decision method because it shows different partition characteristics from natural content. The proposed method solves the problem by classifying the screen content blocks after partition decision, and it shows an increase of 3.11% BD-BR and 42% time reduction compared to the SCC common test condition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.