• 제목/요약/키워드: Decision forest

검색결과 439건 처리시간 0.039초

A case study on the economic feasibility of different patterns of green care and healing complexes

  • Koo, Seungmo;Kim, Dae Sik;Koo, Hee Dong;Lee, Han Joon;Park, Bum Jin;Kim, Kyoung-Chan
    • 농업과학연구
    • /
    • 제44권3호
    • /
    • pp.451-461
    • /
    • 2017
  • Korean agriculture has recently focused on the 6th dimension of industrialization, which includes the functions of healing and care. The green care and healing business is one of the most representative models, satisfying modern consumers' needs for care or healing in rural agricultural environments. Many studies have shown physical and social benefits from green care and healing, but studies regarding economic performance are rarely found. The present study aimed to analyze the economic feasibility of different green care and healing farm complexes proposed in recent domestic research, with various possible combinations of business scenarios. The results show that most of the scenarios are economically feasible as B/C (benefit-cost ratio) and IRR (internal rate of return) are 1.19 and 8.53%, respectively, under scenario 1. This study also performed a break-even analysis for providing more flexible decision-making information. Overall, scenario 1 from green care and healing site and scenario 4 from green care and healing cluster are found to be superior to the other scenarios in terms of B/C and IRR. The scenarios in this study reflect the domestic farms or complexes which have similar functions of care or healing. Therefore, the results of this study provide information on practical policies and business implications in making decisions on the specific size and operational patterns when adopting green care and healing complexes by central or local governments and private sectors in the future.

Ground surface changes detection using interferometric synthetic aperture radar

  • Foong, Loke Kok;Jamali, Ali;Lyu, Zongjie
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.277-290
    • /
    • 2020
  • Disasters, including earthquakes and landslides, have enormous economic and social losses besides their impact on environmental disruption. Iran, and particularly its Western part, is known as an earthquake susceptible area due to numerous strong ground motions. Studying ecological changes due to climate change can improve the public and expert sector's awareness and response to future disastrous events. Synthetic Aperture Radar (SAR) data and Interferometric Synthetic Aperture Radar (InSAR) technologies are appropriate tools for modeling and surface deformation modeling. This paper proposes an efficient approach to detect ground deformation changes using Sentinel-1A. The focal point of this research is to map the ground surface deformation modeling is presented using InSAR technology over Sarpol-e Zahab on 25th November 2018 as a study case. For surface deformation modeling and detection of the ground movement due to earthquake SARPROZ in MATLAB programming language is used and discussed. Results show that there is a general ground movement due to the Sarpol-e Zahab earthquake between -7 millimeter to +18 millimeter in the study area. This research verified previous researches on the advanced image analysis techniques employed for mapping ground movement, where InSAR provides a reliable tool for assisting engineers and the decision-maker in choosing proper policies in a time of disasters. Based on the result, 574 out of 682 damaged buildings and infrastructures due to the 2017 Sarpol-e Zahab earthquake have moved from -2 to +17 mm due to the 2018 earthquake with a magnitude of 6.3 Richter. Results show that mountainous areas have suffered land subsidence, where urban areas had land uplift.

수문기상 관측정보를 활용한 안동댐 유역 기후권역 구분 및 분석 (Analyzing Climate Zones Using Hydro-Meteorological Observation Data in Andong Dam Watershed, South Korea)

  • 김세진;임철희;임윤진;문주연;송철호;이우균
    • 한국기후변화학회지
    • /
    • 제7권3호
    • /
    • pp.269-282
    • /
    • 2016
  • Watershed area can be submerged due to constructions and management of dams, and these change can impact not only on ecosystem and environment of river basin area but also on local climate. This study is conducted to construct and classify climate zones of Andong Dam watershed where the area is submerged due to the construction of the dam. By applying Principal Components Analysis (PCA) and Getis-Ord $Gi^*$ statistics, three climate zones were classified for the result. Each zone was then analyzed and validated with climatic and geological features including topography, land cover, and forest type map. As a result of the analysis, there was a difference in temperature, elevation, precipitation and tree species distribution among the zones. Also, an analysis of land cover map showed that there were more agricultural land near Andong Reservoir. This study on the climatic classification is considered to be useful as the basis for decision-making or policy enforcement regarding ecosystem, environmental management or climate change response.

데이터 마이닝 기법을 이용한 소규모 악성코드 탐지에 관한 연구 (A Study on Detection of Small Size Malicious Code using Data Mining Method)

  • 이택현;국광호
    • 융합보안논문지
    • /
    • 제19권1호
    • /
    • pp.11-17
    • /
    • 2019
  • 최근 인터넷 기술을 악용하는 행위로 인하여 경제적, 정신적 피해가 증가하고 있다. 특히, 신규로 제작되거나 변형된 악성코드는 기존의 정보보호 체계를 우회하여 사이버 보안 위협의 기본 수단으로 활용되고 있다. 이를 억제하기 위한 다양한 연구가 진행되었지만, 실제 악성코드의 많은 비중을 차지하는 소규모 실행 파일에 대한 연구는 미진한 편이다. 본 연구에서는 기존에 알려진 소규모 실행 파일의 특징을 데이터마이닝 기법으로 분석하여 알려지지 않은 악성코드 탐지에 활용할 수 있는 모델을 제안한다. 데이터 마이닝 분석 기법에는 나이브베이지안, SVM, 의사결정나무, 랜덤포레스트, 인공신경망 등 다양하게 수행하였으며, 바이러스토탈의 악성코드 검출 수준에 따라서 개별적으로 정확도를 비교하였다. 결과적으로 분석 파일 34,646개에 대하여 80% 이상의 분류 정확도를 검증하였다.

머신러닝 기반의 수도권 지역 고령운전자 차대사람 사고심각도 분류 연구 (Classifying Severity of Senior Driver Accidents In Capital Regions Based on Machine Learning Algorithms)

  • 김승훈;임영빈;김기정
    • 디지털융복합연구
    • /
    • 제19권4호
    • /
    • pp.25-31
    • /
    • 2021
  • 고령화 시대에 따라 고령운전자 역시 증가하고 있으며, 이들에 의한 교통사고 심각성에 대한 관심이 높아지고 있다. 이에 고령운전자에 의한 사고심각도 예측 모형의 필요성이 점차 요구됨에 따라, 본 연구에서는 기계학습 기법을 활용하여 고령운전자에 의한 차대사람 사고심각도 예측을 위한 모형 정립 및 분석을 수행하고자 한다. 이를 위해 4개의 기계학습 알고리즘 (Logistic Model, KNN, RF, SVM)을 활용, 예측 모형을 개발하고 각 결과를 비교하였다. 연구 결과에 따르면 Logistic과 SVM 모형이 상대적으로 높은 예측력을 보였으며, 정확도 측면에서는 RF가 높은 것으로 나타났다. 추가적으로 각 중요 변수들을 이용하여 교차분석을 수행한 후 그 결과를 제시하였다. 본 연구의 결과들은 고령화시대에 고령운전자에 의한 사고심각성을 예방하기 위한 안전정책 및 인프라 개발에 활용될 것으로 판단된다.

딥러닝과 앙상블 머신러닝 모형의 하천 탁도 예측 특성 비교 연구 (Comparative characteristic of ensemble machine learning and deep learning models for turbidity prediction in a river)

  • 박정수
    • 상하수도학회지
    • /
    • 제35권1호
    • /
    • pp.83-91
    • /
    • 2021
  • The increased turbidity in rivers during flood events has various effects on water environmental management, including drinking water supply systems. Thus, prediction of turbid water is essential for water environmental management. Recently, various advanced machine learning algorithms have been increasingly used in water environmental management. Ensemble machine learning algorithms such as random forest (RF) and gradient boosting decision tree (GBDT) are some of the most popular machine learning algorithms used for water environmental management, along with deep learning algorithms such as recurrent neural networks. In this study GBDT, an ensemble machine learning algorithm, and gated recurrent unit (GRU), a recurrent neural networks algorithm, are used for model development to predict turbidity in a river. The observation frequencies of input data used for the model were 2, 4, 8, 24, 48, 120 and 168 h. The root-mean-square error-observations standard deviation ratio (RSR) of GRU and GBDT ranges between 0.182~0.766 and 0.400~0.683, respectively. Both models show similar prediction accuracy with RSR of 0.682 for GRU and 0.683 for GBDT. The GRU shows better prediction accuracy when the observation frequency is relatively short (i.e., 2, 4, and 8 h) where GBDT shows better prediction accuracy when the observation frequency is relatively long (i.e. 48, 120, 160 h). The results suggest that the characteristics of input data should be considered to develop an appropriate model to predict turbidity.

앙상블 머신러닝 모델 기반 유튜브 스팸 댓글 탐지 (Ensemble Machine Learning Model Based YouTube Spam Comment Detection)

  • 정민철;이지현;오하영
    • 한국정보통신학회논문지
    • /
    • 제24권5호
    • /
    • pp.576-583
    • /
    • 2020
  • 이 논문은 최근 엄청난 성장을 하고 있는 유튜브의 댓글 중 스팸 댓글을 판별하는 기법을 제안한다. 유튜브에서는 광고를 통한 수익 창출이 가능하기 때문에 인기 동영상에서 자신의 채널이나 동영상을 홍보하거나 영상과 관련 없는 댓글을 남기는 스패머(spammer)들이 나타났다. 유튜브에서는 자체적으로 스팸 댓글을 차단하는 시스템을 운영하고 있지만 여전히 제대로 차단하지 못한 스팸 댓글들이 있다. 따라서, 유튜브 스팸 댓글 판별에 대한 관련 연구들을 살펴 보고 인기 동영상인 싸이, 케이티 페리, LMFAO, 에미넴, 샤키라의 뮤직비디오 댓글 데이터에 6가지 머신러닝 기법(의사결정나무, 로지스틱 회귀분석, 베르누이 나이브 베이즈, 랜덤 포레스트, 선형 커널을 이용한 서포트 벡터 머신, 가우시안 커널을 이용한 서포트 벡터 머신)과 이들을 결합한 앙상블 모델로 스팸 탐지 실험을 진행하였다.

데이터마이닝에 기반한 예비군훈련 입소율 예측에 관한 연구 (A study on forecasting attendance rate of reserve forces training based on Data Mining)

  • 조상준;마정목
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.261-267
    • /
    • 2021
  • 예비군훈련을 담당하는 부대의 임무는 예비군이 평시에 실전적인 훈련을 받을 수 있는 환경을 만들어주는 것이다. 하지만 예비군훈련 담당부대의 특성상 운용 할 수 있는 병력부족의 문제로 실전적인 훈련환경을 만들어주는 예비군 훈련 지원 인원편성에 어려움이 많이 있다. 이러한 이유로 현재 군에서는 전년도 월 평균 예비군 입소율 결과로 당해연도 일일단위 예비군 입소율을 예측하면서 인력편성과 부대운영에 대한 계획을 수립하고 있다. 그러나 기존 예측방법은 실제 입소율과 비교 시 오차가 크게 발생할 수 있다는 문제점을 가지고 있다. 이 문제점은 훈련을 지원하는 교관과 조교 선정에 어려움을 주어 훈련성과 달성에 부정적으로 작용할 수 있다. 그러므로 실제 입소율과 오차를 최소화 할 수 있는 더 정확한 예측모형이 필요하다. 따라서 본 연구에서는 데이터마이닝을 기반으로 일일단위 예비군훈련 입소율을 예측한 모형을 제시하였다. 데이터마이닝 기반 모형의 검증을 위해 예비군훈련 담당부대에서 수집한 실제 데이터로 현재 군에서 사용하는 기존 예측방법과 비교하였다. 그 결과 본 연구에서 제시한 데이터마이닝 기반 예측모형이 기존 예측방법보다 오차를 줄이는 우수한 성능을 보였다.

기계 학습을 활용한 논증 수준 자동 채점 및 논증 패턴 분석 (Automated Scoring of Argumentation Levels and Analysis of Argumentation Patterns Using Machine Learning)

  • 이만형;유선아
    • 한국과학교육학회지
    • /
    • 제41권3호
    • /
    • pp.203-220
    • /
    • 2021
  • 이 연구는 과학적 논증 담화에 대한 자동 채점의 성능 개선 방향을 탐색하였으며, 자동 채점 모델을 활용하여 논증 담화의 양상과 패턴을 분석하였다. 이를 위해 과학적 논증 수업에서 발생한 학생 발화를 대상으로 논증 수준을 평가하는 자동 채점을 수행하였다. 이 자동 채점의 데이터셋은 4가지 단위의 논증 피처와 논증 수준 평가틀로 구성되었다. 특히, 자동 채점에 논증 패턴을 반영하기 위하여 논증 클러스터와 n-gram을 활용하였다. 자동 채점 모델은 3가지의 지도 학습 기법으로 구성되었으며, 그 결과 총 33개의 자동 채점 모델이 구성되었다. 자동 채점의 결과, 최대 85.37%, 평균 77.59%의 채점 정확도를 얻었다. 이 과정에서 논증 담화의 패턴이 자동 채점의 성능을 개선하는 주요한 피처임을 확인하였다. 또한, 의사결정 나무와 랜덤 포레스트의 모델을 통하여 과학적 논증 수준에 따른 논증의 양상과 패턴을 분석하였다. 이를 통하여 주장, 자료와 함께 정당화가 체계적으로 구성된 과학적 논증과 자료에 대한 활발한 상호작용이 이루어진 과학적 논증이 논증 수준의 발달을 이끈다는 점 등을 확인하였다. 이와 같은 자동 채점 모델의 해석은 논증 패턴을 분석하는 새로운 연구 방법을 제언하는 것이다.

머신러닝 기반 골프 퍼팅 방향 예측 모델을 활용한 중요 변수 분석 방법론 (Method of Analyzing Important Variables using Machine Learning-based Golf Putting Direction Prediction Model)

  • Kim, Yeon Ho;Cho, Seung Hyun;Jung, Hae Ryun;Lee, Ki Kwang
    • 한국운동역학회지
    • /
    • 제32권1호
    • /
    • pp.1-8
    • /
    • 2022
  • Objective: This study proposes a methodology to analyze important variables that have a significant impact on the putting direction prediction using a machine learning-based putting direction prediction model trained with IMU sensor data. Method: Putting data were collected using an IMU sensor measuring 12 variables from 6 adult males in their 20s at K University who had no golf experience. The data was preprocessed so that it could be applied to machine learning, and a model was built using five machine learning algorithms. Finally, by comparing the performance of the built models, the model with the highest performance was selected as the proposed model, and then 12 variables of the IMU sensor were applied one by one to analyze important variables affecting the learning performance. Results: As a result of comparing the performance of five machine learning algorithms (K-NN, Naive Bayes, Decision Tree, Random Forest, and Light GBM), the prediction accuracy of the Light GBM-based prediction model was higher than that of other algorithms. Using the Light GBM algorithm, which had excellent performance, an experiment was performed to rank the importance of variables that affect the direction prediction of the model. Conclusion: Among the five machine learning algorithms, the algorithm that best predicts the putting direction was the Light GBM algorithm. When the model predicted the putting direction, the variable that had the greatest influence was the left-right inclination (Roll).