• Title/Summary/Keyword: Decision Tree Regression

Search Result 328, Processing Time 0.033 seconds

A Comparative Study on the Accuracy of Important Statistical Prediction Techniques for Marketing Data (마케팅 데이터를 대상으로 중요 통계 예측 기법의 정확성에 대한 비교 연구)

  • Cho, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.775-780
    • /
    • 2019
  • Techniques for predicting the future can be categorized into statistics-based and deep-run-based techniques. Among them, statistic-based techniques are widely used because simple and highly accurate. However, working-level officials have difficulty using many analytical techniques correctly. In this study, we compared the accuracy of prediction by applying multinomial logistic regression, decision tree, random forest, support vector machine, and Bayesian inference to marketing related data. The same marketing data was used, and analysis was conducted by using R. The prediction results of various techniques reflecting the data characteristics of the marketing field will be a good reference for practitioners.

Scoring models to detect foreign exchange money laundering (외국환 거래의 자금세탁 혐의도 점수모형 개발에 관한 연구)

  • Hong, Seong-Ik;Moon, Tae-Hee;Sohn, So-Young
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.268-276
    • /
    • 2005
  • In recent years, the money Laundering crimes are increasing by means of foreign exchange transactions. Our study proposes four scoring models to provide early warning of the laundering in foreign exchange transactions for both inward and outward remittances: logistic regression model, decision tree, neural network, and ensemble model which combines the three models. In terms of accuracy of test data, decision tree model is selected for the inward remittance and an ensemble model for the outward remittance. From our study results, the accumulated number of transaction turns out to be the most important predictor variable. The proposed scoring models deal with the transaction level and is expected to help the bank teller to detect the laundering related transactions in the early stage.

Classification of COVID-19 Disease: A Machine Learning Perspective

  • Kinza Sardar
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.107-112
    • /
    • 2024
  • Nowadays the deadly virus famous as COVID-19 spread all over the world starts from the Wuhan China in 2019. This disease COVID-19 Virus effect millions of people in very short time. There are so many symptoms of COVID19 perhaps the Identification of a person infected with COVID-19 virus is really a difficult task. Moreover it's a challenging task to identify whether a person or individual have covid test positive or negative. We are developing a framework in which we used machine learning techniques..The proposed method uses DecisionTree, KNearestNeighbors, GaussianNB, LogisticRegression, BernoulliNB , RandomForest , Machine Learning methods as the classifier for diagnosis of covid ,however, 5-fold and 10-fold cross-validations were applied through the classification process. The experimental results showed that the best accuracy obtained from Decision Tree classifiers. The data preprocessing techniques have been applied for improving the classification performance. Recall, accuracy, precision, and F-score metrics were used to evaluate the classification performance. In future we will improve model accuracy more than we achieved now that is 93 percent by applying different techniques

Predicting Stock Liquidity by Using Ensemble Data Mining Methods

  • Bae, Eun Chan;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.6
    • /
    • pp.9-19
    • /
    • 2016
  • In finance literature, stock liquidity showing how stocks can be cashed out in the market has received rich attentions from both academicians and practitioners. The reasons are plenty. First, it is known that stock liquidity affects significantly asset pricing. Second, macroeconomic announcements influence liquidity in the stock market. Therefore, stock liquidity itself affects investors' decision and managers' decision as well. Though there exist a great deal of literature about stock liquidity in finance literature, it is quite clear that there are no studies attempting to investigate the stock liquidity issue as one of decision making problems. In finance literature, most of stock liquidity studies had dealt with limited views such as how much it influences stock price, which variables are associated with describing the stock liquidity significantly, etc. However, this paper posits that stock liquidity issue may become a serious decision-making problem, and then be handled by using data mining techniques to estimate its future extent with statistical validity. In this sense, we collected financial data set from a number of manufacturing companies listed in KRX (Korea Exchange) during the period of 2010 to 2013. The reason why we selected dataset from 2010 was to avoid the after-shocks of financial crisis that occurred in 2008. We used Fn-GuidPro system to gather total 5,700 financial data set. Stock liquidity measure was computed by the procedures proposed by Amihud (2002) which is known to show best metrics for showing relationship with daily return. We applied five data mining techniques (or classifiers) such as Bayesian network, support vector machine (SVM), decision tree, neural network, and ensemble method. Bayesian networks include GBN (General Bayesian Network), NBN (Naive BN), TAN (Tree Augmented NBN). Decision tree uses CART and C4.5. Regression result was used as a benchmarking performance. Ensemble method uses two types-integration of two classifiers, and three classifiers. Ensemble method is based on voting for the sake of integrating classifiers. Among the single classifiers, CART showed best performance with 48.2%, compared with 37.18% by regression. Among the ensemble methods, the result from integrating TAN, CART, and SVM was best with 49.25%. Through the additional analysis in individual industries, those relatively stabilized industries like electronic appliances, wholesale & retailing, woods, leather-bags-shoes showed better performance over 50%.

Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making (퍼지의사결정을 이용한 RC구조물의 건전성평가)

  • 손용우;정영채;김종길
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.131-140
    • /
    • 2004
  • It really needs fuzzy decision making of integrity assessment considering about both durability and load carrying capacity for maintenance and administration, such as repairing and reinforcing. This thesis shows efficient models about reinforced concrete structure using CART-ANFIS. It compares and analyzes decision trees parts of expert system, using the theory of fuzzy, and applying damage & diagnosis at reinforced concrete structure and decision trees of integrity assessment using established artificial neural. Decided the theory of reinforcement design for recovery of durability at damaged concrete & the theory of reinforcement design for increasing load carrying capacity keep stability of damage and detection. It is more efficient maintenance and administration at reinforced concrete for using integrity assessment model of this study and can carry out predicting cost of life cycle.

Prediction of concrete compressive strength using non-destructive test results

  • Erdal, Hamit;Erdal, Mursel;Simsek, Osman;Erdal, Halil Ibrahim
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.407-417
    • /
    • 2018
  • Concrete which is a composite material is one of the most important construction materials. Compressive strength is a commonly used parameter for the assessment of concrete quality. Accurate prediction of concrete compressive strength is an important issue. In this study, we utilized an experimental procedure for the assessment of concrete quality. Firstly, the concrete mix was prepared according to C 20 type concrete, and slump of fresh concrete was about 20 cm. After the placement of fresh concrete to formworks, compaction was achieved using a vibrating screed. After 28 day period, a total of 100 core samples having 75 mm diameter were extracted. On the core samples pulse velocity determination tests and compressive strength tests were performed. Besides, Windsor probe penetration tests and Schmidt hammer tests were also performed. After setting up the data set, twelve artificial intelligence (AI) models compared for predicting the concrete compressive strength. These models can be divided into three categories (i) Functions (i.e., Linear Regression, Simple Linear Regression, Multilayer Perceptron, Support Vector Regression), (ii) Lazy-Learning Algorithms (i.e., IBk Linear NN Search, KStar, Locally Weighted Learning) (iii) Tree-Based Learning Algorithms (i.e., Decision Stump, Model Trees Regression, Random Forest, Random Tree, Reduced Error Pruning Tree). Four evaluation processes, four validation implements (i.e., 10-fold cross validation, 5-fold cross validation, 10% split sample validation & 20% split sample validation) are used to examine the performance of predictive models. This study shows that machine learning regression techniques are promising tools for predicting compressive strength of concrete.

Comparison of the Machine Learning Models Predicting Lithium-ion Battery Capacity for Remaining Useful Life Estimation (리튬이온 배터리 수명추정을 위한 용량예측 머신러닝 모델의 성능 비교)

  • Yoo, Sangwoo;Shin, Yongbeom;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.91-97
    • /
    • 2020
  • Lithium-ion batteries (LIBs) have a longer lifespan, higher energy density, and lower self-discharge rates than other batteries, therefore, they are preferred as an Energy Storage System (ESS). However, during years 2017-2019, 28 ESS fire accidents occurred in Korea, and accurate capacity estimation of LIB is essential to ensure safety and reliability during operations. In this study, data-driven modeling that predicts capacity changes according to the charging cycle of LIB was conducted, and developed models were compared their performance for the selection of the optimal machine learning model, which includes the Decision Tree, Ensemble Learning Method, Support Vector Regression, and Gaussian Process Regression (GPR). For model training, lithium battery test data provided by NASA was used, and GPR showed the best prediction performance. Based on this study, we will develop an enhanced LIB capacity prediction and remaining useful life estimation model through additional data training, and improve the performance of anomaly detection and monitoring during operations, enabling safe and stable ESS operations.

Exploring Time Series Data Information Extraction and Regression using DTW based kNN (DTW 거리 기반 kNN을 활용한 시계열 데이터 정보 추출 및 회귀 예측)

  • Hyeonjun Yang;Chaeguk Lim;Woohyuk Jung;Jihwan Woo
    • Information Systems Review
    • /
    • v.26 no.2
    • /
    • pp.83-93
    • /
    • 2024
  • This study proposes a preprocessing methodology based on Dynamic Time Warping (DTW) and k-Nearest Neighbors (kNN) to effectively represent time series data for predicting the completion quality of electroplating baths. The proposed DTW-based kNN preprocessing approach was applied to various regression models and compared. The results demonstrated a performance improvement of up to 43% in maximum RMSE and 24% in MAE compared to traditional decision tree models. Notably, when integrated with neural network-based regression models, the performance improvements were pronounced. The combined structure of the proposed preprocessing method and regression models appears suitable for situations with long time series data and limited data samples, reducing the risk of overfitting and enabling reasonable predictions even with scarce data. However, as the number of data samples increases, the computational load of the DTW and kNN algorithms also increases, indicating a need for future research to improve computational efficiency.

Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames

  • Kim, Seung-Eock;Vu, Quang-Viet;Papazafeiropoulos, George;Kong, Zhengyi;Truong, Viet-Hung
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.193-209
    • /
    • 2020
  • In this paper, the efficiency of five Machine Learning (ML) methods consisting of Deep Learning (DL), Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), and Gradient Tree Booting (GTB) for regression and classification of the Ultimate Load Factor (ULF) of nonlinear inelastic steel frames is compared. For this purpose, a two-story, a six-story, and a twenty-story space frame are considered. An advanced nonlinear inelastic analysis is carried out for the steel frames to generate datasets for the training of the considered ML methods. In each dataset, the input variables are the geometric features of W-sections and the output variable is the ULF of the frame. The comparison between the five ML methods is made in terms of the mean-squared-error (MSE) for the regression models and the accuracy for the classification models, respectively. Moreover, the ULF distribution curve is calculated for each frame and the strength failure probability is estimated. It is found that the GTB method has the best efficiency in both regression and classification of ULF regardless of the number of training samples and the space frames considered.

MRI Predictors of Malignant Transformation in Patients with Inverted Papilloma: A Decision Tree Analysis Using Conventional Imaging Features and Histogram Analysis of Apparent Diffusion Coefficients

  • Chong Hyun Suh;Jeong Hyun Lee;Mi Sun Chung;Xiao Quan Xu;Yu Sub Sung;Sae Rom Chung;Young Jun Choi;Jung Hwan Baek
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.751-758
    • /
    • 2021
  • Objective: Preoperative differentiation between inverted papilloma (IP) and its malignant transformation to squamous cell carcinoma (IP-SCC) is critical for patient management. We aimed to determine the diagnostic accuracy of conventional imaging features and histogram parameters obtained from whole tumor apparent diffusion coefficient (ADC) values to predict IP-SCC in patients with IP, using decision tree analysis. Materials and Methods: In this retrospective study, we analyzed data generated from the records of 180 consecutive patients with histopathologically diagnosed IP or IP-SCC who underwent head and neck magnetic resonance imaging, including diffusion-weighted imaging and 62 patients were included in the study. To obtain whole tumor ADC values, the region of interest was placed to cover the entire volume of the tumor. Classification and regression tree analyses were performed to determine the most significant predictors of IP-SCC among multiple covariates. The final tree was selected by cross-validation pruning based on minimal error. Results: Of 62 patients with IP, 21 (34%) had IP-SCC. The decision tree analysis revealed that the loss of convoluted cerebriform pattern and the 20th percentile cutoff of ADC were the most significant predictors of IP-SCC. With these decision trees, the sensitivity, specificity, accuracy, and C-statistics were 86% (18 out of 21; 95% confidence interval [CI], 65-95%), 100% (41 out of 41; 95% CI, 91-100%), 95% (59 out of 61; 95% CI, 87-98%), and 0.966 (95% CI, 0.912-1.000), respectively. Conclusion: Decision tree analysis using conventional imaging features and histogram analysis of whole volume ADC could predict IP-SCC in patients with IP with high diagnostic accuracy.