주식시장에는 많은 투자자들이 참여하고 있으며 점점 더 많은 사람이 주식투자에 관심을 가지고 있다. 주식시장에서 위험을 회피하고 수익을 얻기 위해서는 다양한 정보를 바탕으로 정확한 의사결정을 해야한다. 즉 수익을 얻을 수 있는 종목 선택, 적절한 매수-매도 가격의 결정, 그리고 적절한 보유기간 등을 결정해야 한다. 본 논문에서는 개인 주식 투자자의 의사결정 지원을 위한 데이터마이닝 도구를 제안한다. 즉, 개인 투자자가 직접 기계학습 방법을 적용하여 주가예측 모델을 생성할 수 있게 하고, 적절한 매수-매도 가격과 보유기간 등을 결정하는 것을 도와주는 도구를 제안한다. 제안하는 도구는 과거 데이터를 이용하여 투자자 자신의 성향에 맞는 투자에서의 의사결정을 할 수 있도록 지원하는 도구로서 주가데이터 관리, 기계학습 적용을 통한 주가예측 모델 생성, 투자 시뮬레이션 등의 기능을 제공한다. 사용자는 스스로 주가에 영향을 미칠 수 있다고 판단하는 기술적 지표를 선정하고 이를 이용하여 주가예측 모델을 만들고 테스트 할 수 있으며, 적절한 예측모델을 적용하여 시뮬레이션을 수행해 봄으로써 실제로 어느 정도 수익을 얻을 수 있는지 평가하고 적절한 매매 정책을 수립할 수 있다. 제안하는 도구를 이용하여 주식 투자자는 기존의 감정적 판단에 의한 투자가 아닌 객관적 데이터에 의해 검증을 거친 주가예측 모델과 매매정책에 따라 주식투자를 할 수 있어 이전 보다 나은 수익을 기대할 수 있다.
본 연구에서는 안면도 소나무 임지에 대해 임분 내 생장인자들간의 상관관계를 구명하고 이를 기초로 동적 임분생장모델을 구축하였다. 이를 위해 영급이 고루 분포되도록 96개의 표본점을 선정하였고, 각 표본점에서 입목의 흉고직경, 수고를 측정한 후 이를 분석하여 평균흉고직경, 평균수고, 우세목수고, ha당 본수, ha당 단면적, ha당 재적 등을 추정하였다. SAS의 비선형 회귀분석(NLIN) 및 단순선형분석(REG)을 통해 생장인자간의 함수식을 유도하였으며, 이 함수들을 이용하여 관리방법에 따라 임분의 생장 및 수확이 다양하게 예측될 수 있는 동적 임분생장모델을 구축하였다. 다양한 시업주기 및 강도를 적용해 임분의 생장을 예측한 결과, 본 연구에서 구축된 동적 임분생장모델은 일반적인 생장법칙을 잘 나타내고 있어 안면도 소나무임분의 생장 및 수확량 예측에 적합한 것으로 판단되었다. 이러한 동적 임분생장모델은 실제 산림경영에서 다양한 관리방법에 따른 임분의 생장예측을 위하여 이용될 수 있을 것이며, 산림경영계획에 있어 의사결정을 위한 도구로서 이용될 수 있을 것이다.
Journal of Information Science Theory and Practice
/
제2권3호
/
pp.29-39
/
2014
In recent years, several studies have proposed making use of the Twitter micro-blogging service to track various trends in online media and discussion. In this study, we specifically examine the use of Twitter to track discussions of food safety in the Korean language. Given the irregularity of keyword use in most tweets, we focus on optimistic machine-learning and feature set selection to classify collected tweets. We build the classifier model using Naive Bayes & Naive Bayes Multinomial, Support Vector Machine, and Decision Tree Algorithms, all of which show good performance. To select an optimum feature set, we construct a basic feature set as a standard for performance comparison, so that further test feature sets can be evaluated. Experiments show that precision and F-measure performance are best when using a Naive Bayes Multinomial classifier model with a test feature set defined by extracting Substantive, Predicate, Modifier, and Interjection parts of speech.
최근 스마트 폰에 다양한 센서를 내장할 수 있게 되었고 스마트폰에 내장된 센서를 이용항 동작 인지에 관한 연구가 활발히 진행되고 있다. 스마트폰을 이용한 동작 인지는 노인 복지 지원이나 운동량 측정. 생활 패턴 분석, 운동 패턴 분석 등 다양한 분야에 활용될 수 있다. 하지만 스마트 폰에 내장된 센서를 이용하여 동작 인지를 하는 방법은 사용되는 센서의 수에 따라 단일 센서를 이용한 동작인지와 다중 센서를 이용한 동작인지로 나눌 수 있다. 단일 센서를 이용하는 경우 대부분 가속도 센서를 이용하기 때문에 배터리 부담은 줄지만 다양한 동작을 인지할 때에 특징(feature) 추출의 어려움과 동작 인지 정확도가 낮다는 문제점이 있다. 그리고 다중 센서를 이용하는 경우 대부분 가속도 센서와 중력센서를 사용하고 필요에 따라 다른 센서를 추가하여 동작인지를 수행하며 다양한 동작을 보다 높은 정확도로 인지할 수 있지만 다수의 센서를 사용하기 때문에 배터리 부담이 증가한다는 문제점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 스마트 폰에 내장된 가속도 센서를 이용하여 다양한 동작을 높은 정확도로 인지하는 방법을 제안한다. 서로 다른 10가지의 동작을 높을 정확도로 인지하기 위해 원시 데이터로부터 17가지 특징을 추출하고 각 동작을 분류하기 위해 Ensemble of Nested Dichotomies 분류기를 사용하였다. Ensemble of Nested Dichotomies 분류기는 다중 클래스 문제를 다수의 이진 분류 문제로 변형하여 다중 클래스 문제를 해결하는 방법으로 서로 다른 Nested Dichotomy 분류기의 분류 결과를 통해 다중 클래스 문제를 해결하는 기법이다. Nested Dichotomy 분류기 학습에는 Random Forest 분류기를 사용하였다. 성능 평가를 위해 Decision Tree, k-Nearest Neighbors, Support Vector Machine과 비교 실험을 한 결과 Ensemble of Nested Dichotomies 분류기를 사용하여 동작 인지를 수행하는 것이 가장 높은 정확도를 보였다.
쌀 수급 조절 정책의 합리적 수립을 지원하기 위해서는 벼 재배면적의 조기 추정이 필요하다. 본 연구는 국내 벼 주산지인 김제시를 대상으로 Sentinel-1 위성영상을 활용하여 이앙이 마무리되는 7월 초순 벼 재배면적을 조기에 추정하기 위해 최적의 훈련자료 수집을 위한 무인기(UAV) 영상 활용 방안을 제시하고자 수행하였다. 5월부터 7월 초까지 수집한 Sentinel-1 위성영상은 ESA에서 제공하는 SNAP(SeNtinel application platform, Version 8.0)프로그램으로 전처리하고 팜맵을 활용하여 농경지만을 추출하였다. 벼 재배지 중심 지역과 벼·콩 혼재지 무인기 영상 촬영 영역을 혼합하여 훈련자료로 선정하여 김제시 전체 벼 재배지를 추정한 결과, 정확도와 카파 계수는 각각 89.9%, 0.774로 가장 좋은 결과를 보였는데, 이는 김제시 전역을 대상으로 무작위 표본조사를 수행하여 분류한 결과와 비교 시 전체 정확도 1% 내외, 카파 계수 0.02~0.04 범위에서 차이를 보여 벼 재배지 조기 추정을 위한 무인기 영상 활용 가능성을 확인할 수 있었다.
본 연구의 목적은 거리독립생장모델을 이용한 잣나무 임분의 간벌효과 분석모델을 개발하는데 있다. 이 모델은 간벌시업계획의 주요 인자로 간벌의 횟수와 시기, 강도 그리고 간벌방법을 고려할 수 있도록 설계되었다. 개발된 모델의 적용성 검토를 위해 간벌시업계획에 따른 7개의 시나리오를 작성하여 임분생장 효과를 분석하였다. 연구결과, 개발된 모델을 이용하여 간벌시업 형태에 따른 개체목의 직경급별 본수, 수고, 재적과 임분의 평균흉고직경, 평균수고, ha당 본수 및 재적변화에 관한 생장을 예측할 수 있었다. 1개소의 잣나무 현실임분을 대상으로한 모델의 적용성 검토에 있어서, 간벌시나리오별 임분생장량을 비교한 결과, 간벌시업에 의한 임분밀도조절로 주벌시점의 재적량 증가효과를 기대할 수는 없는 것으로 나타났다. 그러나 간벌량과 주벌량을 포함하는 총수확량은 무간벌의 경우보다 간벌시업을 한 경우에 ha당 약 $40{\sim}75m^3$의 증가효과를, 그리고 임분의 평균흉고직경에서는 5 cm이내, 평균 수고에서는 1 m이내의 증가효과를 보였다. 본 연구를 통해 개발된 모델은 현실임분의 구성여건에 따라 간별의 실시 여부 및 간벌시업체계의 선택문제를 결정하는 의사결정지원도구로서 활용가능 할 것이다.
정기예금 가입 여부 예측은 은행의 대표적인 금융 마케팅 중 하나로, 은행은 다양한 고객 정보를 활용하여 예측 모델을 구성할 수 있다. 정기예금 가입 여부의 분류 정확도를 향상하기 위해, 많은 연구에서 기계학습 기법들을 이용하여 분류 모델들을 개발하였다. 하지만, 이러한 모델들이 만족스러운 성능을 보일지라도 모델의 의사결정 과정에 대한 근거가 적절하게 설명되지 않는다면 산업에서 활용하기가 쉽지 않다. 이러한 문제점을 해결하기 위해, 본 논문은 설명 가능한 정기예금 가입 여부 예측 기법을 제안한다. 먼저, 테이블 형식에서 우수한 성능을 도출하는 의사결정 나무 기반 앙상블 학습 기법인 랜덤 포레스트, GBM, XGBoost, LightGBM을 이용하여 분류 모델들을 개발하고, 10겹 교차검증을 통해 모델들의 분류 성능을 심층 분석한다. 다음으로, 가장 우수한 성능을 도출하는 모델에 설명 가능한 인공지능 기법인 SHAP을 적용하여 고객 정보의 영향도와 의사결정 과정 등을 해석할 수 있는 근거를 제공한다. 제안한 기법의 실용성과 타당성을 입증하기 위해, Kaggle에서 제공한 은행 마케팅 데이터 셋을 대상으로 모의실험을 진행하였으며, 데이터 셋 구성에 따라 GBM과 LightGBM 모델에 SHAP을 각기 적용하여 설명 가능한 정기예금 가입 여부를 위한 분석 및 시각화를 수행하였다.
본 연구자들은 재가노인의 사례관리 과정에서 가장 핵심적인 요소가 되는 욕구 중심의 통합적 사정을 위한 28개의 욕구가 포함된 사정도구를 개발하였으며, 그 후속 연구로 개발된 욕구사정도구를 활용해 전국 노인복지관 협회 산하 120개 기관의 재가 노인 676명의 사정 데이터를 수집하고 데이터마이닝의 의사결정 나무분석 기법을 활용하여 욕구에 적합한 사회복지 서비스를 제공하기 위한 욕구추출 알고리즘을 개발하였다. 본 연구를 통해 재가노인의 욕구 28개에 대한 욕구추출 알고리즘은 <표3>에 요약하였다. 욕구 8번 "외출 시 도움을 원한다."의 의사결정모형을 예로 들면, 호소 23번을 주요 변인으로 외부이동 도움을 요청할 경우 80.3%와 요청하지 않을 경우 11.4%로 구분되었다. 이용자가 외부 이동에 대한 호소가 있고, 수발자가 있는 경우 87.9%로 욕구가 증가하였지만, 수발자가 없는 이용자의 경우 47.4%로 감소하였다. 노인이 외부이동 지원에 대한 요청과 수발자가 있으며, 청소하기의 완전도움이 필요한 경우, 외부이동 도움에 대한 욕구는 94.2%로 나타났다. 그러나 이용자가 외부이동의 도움을 요청하지 않더라도, ADL의 목욕하기에 완전도움으로 응답한 경우 외출도움의 욕구는 11.4%에서 80.0%로 급격히 증가하는 것을 확인할 수 있다. 그러나 ADL 목욕하기의 기능이 부분도움 또는 완전자립의 경우 외출도움이 필요하다고 분류될 가능성은 7.7%로 낮게 나타났다. 위와 같은 의사결정모형은 최대 나무 깊이는 5수준을 정지규칙으로 하여, 부모마디와 자식마디의 사례 수를 각각 50과 25로 지정하였다. 이를 통해 "외출 시 도움을 원한다"라는 욕구의 경우 182.13%의 효과적인 의사결정을 하고 있다. 본 연구의 결과로 제시한 알고리즘은 재가노인의 욕구를 추출함에 있어서 체계적이고 과학적인 기초자료로 활용될 수 있다.
모순에 대한 일반적인 생각은 모순을 해결 가능성이 전혀 없는 공집합이나 논리적으로 틀린 것이다. 두 가지 대안 중에서 어느 쪽도 바람직하지 못한 결과를 초래하는 딜레마는 그 안에 숨어 있는 모순을 해결해야 하므로 해결이 어렵다. 하지만 이런 특성으로 인해 역설적으로 모순 해결은 혁신적이고 창의적인 문제 해결로 간주 되어왔다. 문제의 해법을 모순 해결의 관점에서 분석하는 트리즈(TRIZ)는 그동안 컴퓨터보다는 인간의 관점에서 문제 해결 방법으로 사용되었다. 트리즈처럼 모순 해결 중심으로 문제를 분석하는 나비 모형은 문제 해결의 자동화 관점에서 기호 논리학을 이용하여 모순 문제의 유형을 분석하였다. 모순문제유형별 구체적 해결전략을 적용하기 위해 본 연구에서는 의사결정트리 기반의 나비 알고리즘을 설계하였다. 본 연구는 파이선 tkInter를 바탕으로 주어진 모순 문제의 구체적 해결전략을 찾아 사용자들에게 제시하는 시각화 도구를 개발하였다. 개발한 도구를 검증하기 위하여 중학교 3학년 학생들이 나비 알고리즘을 학습한 후, 나무지지대의 모순 문제를 분석하도록 하였다. 학생들이 새로운 해결책을 찾아 발명대회에 참가하여 대상을 받았다. 본 연구에서 개발한 의사결정트리 기반 나비 알고리즘은 문제 해결 초기에 문제의 해결공간을 체계적으로 줄여주어 시행착오 없이 모순 문제를 해결하는데 도움을 줄 수 있다.
The electronic commerce site (EC site) has become an important marketing channel where consumers can purchase many kinds of products; their access logs, including purchase records and browsing histories, are saved in the EC sites' databases. These log data can be utilized for the purpose of web marketing. The customers who purchase many product items are good customers, whereas the other customers, who do not purchase many items, must not be good customers even if they browse many items. If the attributes of good customers and those of other customers are clarified, such information is valuable as input for making a new marketing strategy. Regarding the product items, the characteristics of good items that are bought by many users are valuable information. It is necessary to construct a method to efficiently analyze such characteristics. This paper proposes a new latent class model to analyze both purchasing and browsing histories to make latent item and user clusters. By applying the proposal, an example of data analysis on an EC site is demonstrated. Through the clusters obtained by the proposed latent class model and the classification rule by the decision tree model, new findings are extracted from the data of purchasing and browsing histories.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.