• 제목/요약/키워드: Decision Hyperplane

검색결과 13건 처리시간 0.022초

IHP 알고리즘을 이용한 SIMO 시스템용 적응 직접 결정 등화기 연구 (An Adaptive Decision-Directed Equalizer using Iterative Hyperplane Projection for SIMO systems)

  • 이원철
    • 한국통신학회논문지
    • /
    • 제30권1C호
    • /
    • pp.82-91
    • /
    • 2005
  • 본 논문은 iterative hyperplane projection 을 이용한 효율적인 APA(affine projection algorithm)을 소개한다. 다양한 적응 알고리즘들 중 APA는 랭크 부족 문제를 해결하며 고속 수렴의 특성 때문에 다양한 응용분야에 적용되고 있다. SIMO(Single-Input-Multiple-Output) 시스템을 위한 STDE(Space-Time Decision- directed Equalizer) 적용 시 흔히 단일 채널 환경에서 발생하는 "shifting invariance property"를 이용할 수 없으므로 인해 FTF(Fast Transversal Filter)와 같이 저 복잡도를 갖는 고속 적응 알고리즘을 사용할 수 없다. 따라서 APA 기반의 STDE 기능을 수행하는 과정에서 SMI(Sample Matrix Inversion) 처리가 불가피하며, 계산상의 복잡도가 증가하게 된다. 이러한 문제점을 해결하고자 본 논문에서는 APA 기법 고유의 우수한 추적 특성 및 고속 수렴 성질을 유지하면서, 낮은 복잡도를 갖는 IHP(Iterative Hyperplane Projection) 알고리즘 기반의 효율적인 수정 APA 기법을 소개한다. 제안된 IHP 기반 APA 기법의 성능을 확인하기 위하여, 무선 SIMO 채널 환경 하에서 제안된 IHP-APA 알고리즘을 적용한 STED에 대한 비트 에러 오률 (BER) 특성과 계산량 분석을 통해서 우수성을 입증하였다.

Imbalanced SVM-Based Anomaly Detection Algorithm for Imbalanced Training Datasets

  • Wang, GuiPing;Yang, JianXi;Li, Ren
    • ETRI Journal
    • /
    • 제39권5호
    • /
    • pp.621-631
    • /
    • 2017
  • Abnormal samples are usually difficult to obtain in production systems, resulting in imbalanced training sample sets. Namely, the number of positive samples is far less than the number of negative samples. Traditional Support Vector Machine (SVM)-based anomaly detection algorithms perform poorly for highly imbalanced datasets: the learned classification hyperplane skews toward the positive samples, resulting in a high false-negative rate. This article proposes a new imbalanced SVM (termed ImSVM)-based anomaly detection algorithm, which assigns a different weight for each positive support vector in the decision function. ImSVM adjusts the learned classification hyperplane to make the decision function achieve a maximum GMean measure value on the dataset. The above problem is converted into an unconstrained optimization problem to search the optimal weight vector. Experiments are carried out on both Cloud datasets and Knowledge Discovery and Data Mining datasets to evaluate ImSVM. Highly imbalanced training sample sets are constructed. The experimental results show that ImSVM outperforms over-sampling techniques and several existing imbalanced SVM-based techniques.

가스터빈 엔진의 복합 결함 진단을 위한 SVM과 MLP의 성능 비교 (A Performance Comparison of SVM and MLP for Multiple Defect Diagnosis of Gas Turbine Engine)

  • 박준철;노태성;최동환
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.158-161
    • /
    • 2005
  • 본 연구에서는 Support Vector Machine (SVM)을 이용하여 가스 터빈 엔진의 결함 진단을 시도하였다. SVM은 벡터 공간에서 임의의 비선형 경계인 Hyperplane을 찾아 두 개의 집합을 분류하는 방법으로 수학적으로 최적의 해를 찾을 수 있다고 알려져 있다. 이러한 이진 분류용 SVM을 다층으로 결합하여 가스 터빈의 결함을 정량적으로 판단해 내는 방법을 제안하였으며 기존의 Multi Layer Perceptron(MLP)보다 빠르고 신뢰성 있는 진단 결과를 보여주었음을 확인하였다.

  • PDF

베트남인 한국어 학습자와 한국인의 한국어 겹받침 발음 비교 연구 (A Comparative Study on the Pronunciations of Korean and Vietnamese on Korean Syllable Final Double Consonants)

  • 장경남;유광복
    • 문화기술의 융합
    • /
    • 제8권6호
    • /
    • pp.637-646
    • /
    • 2022
  • 본 논문은 한국어의 겹받침 발음에 대하여 베트남인 한국어 학습자와 한국인을 비교 연구하였다. 언어학적인 연구를 통하여 조사하고 분석한 겹받침 발음에 관한 여러 오류와 제시한 교육 방법에 대하여 공학적 특히 음성 신호처리의 분석 방법을 활용하여서 이런 연구 결과를 확인하였고 이에 우리는 본 논문에서 새로운 교육 방법을 제시하였다. 인공지능의 기계 학습에 많이 활용되고 있는 서포팅 벡터 머신 (supporting vector machine, SVM)을 사용하여서 베트남인 학습자의 발음과 한국인의 발음을 비교하였다. SVM의 초결정 평면을 구할 수 있다는 것은 베트남인 학습자의 겹받침 발음이 한국인의 발음과 차이를 보인다는 것이고, 그 반대라면 발음을 잘하고 있다는 것이다. 본 논문에서 우리가 제시한 새로운 교육 방법은 쓰기와 듣기로만 구성하는 것이 아닌 음성 신호의 시간 영역에서 파형과 그것에 대응하는 신호의 에너지 등과 같은 피교육자에게 보일 수 있는 것들을 포함하는 효율적인 발음 교육 방법이다.

러프집합을 이용한 다층 신경망의 구조최적화에 관한 연구 (A Study on the Structure Optimization of Multilayer Neural Networks using Rough Set Theory)

  • 정영준;전효병;심귀보
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권2호
    • /
    • pp.82-88
    • /
    • 1999
  • In this paper, we propose a new structure optimization method of multilayer neural networks which begin and carry out learning from a bigger network. This method redundant links and neurons according to the rough set theory. In order to find redundant links, we analyze the variations of all weights and output errors in every step of the learning process, and then make the decision table from their variation of weights and output errors. We can find the redundant links from the initial structure by analyzing the decision table using the rough set theory. This enables us to build a structure as compact as possible, and also enables mapping between input and output. We show the validity and effectiveness of the proposed algorithm by applying it to the XOR problem.

  • PDF

Support Vector Machine의 입력데이터 오류에 대한 Robustness분석 (Robustness Analysis of Support Vector Machines against Errors in Input Data)

  • 이상근;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.715-717
    • /
    • 2005
  • Support vector machine(SVM)은 최근 각광받는 기계학습 방법 중 하나로서, kernel function 이라는 사상(mapping)을 이용하여 입력 공간의 벡터를 classification이 용이한 특징 (feature) 공간의 벡터로 변환하는 것을 근간으로 한다. SVM은 이러한 특징 공간에서 두 클래스를 구분 짓는 hyperplane을 일련의 최적화 방법론을 사용하여 찾아내며, 주어진 문제가 convex problem 인 경우 항상 global optimal solution 을 보장하는 등의 장점을 지닌다. 한편 bioinformatics 연구에서 주로 사용되는 데이터는 측정 오류 등 일련의 오류를 포함하고 있으며, 이러한 오류는 기계학습 방법론이 어떤 decision boundary를 찾아내는가에 영향을 끼치게 된다. 특히 SVM의 경우 이러한 오류는 특징 공간 벡터간의 관계를 나타내는 Gram matrix를 변화로 나타나게 된다. 본 연구에서는 입력 공간에 오류가 발생할 때 그것이 SVM 의 decision boundary를 어떻게 변화시키는가를 대표적인 두 가지 kernel function, 즉 linear kernel과 Gaussian kernel에 대해 분석하였다. Wisconsin대학의 유방암(breast cancer) 데이터에 대해 실험한 결과, 데이터의 오류에 따른 SVM 의 classification 성능 변화 양상을 관찰하여 커널의 종류에 따라 SVM이 어떠한 특성을 보이는가를 밝혀낼 수 있었다. 또 흥미롭게도 어떤 조건 하에서는 오류가 크더라도 오히려 SVM 의 성능이 향상되는 것을 발견했는데, 이것은 바꾸어 생각하면 Gram matrix 의 일부를 변경하여 SVM 의 성능 향상을 꾀할 수 있음을 나타낸다.

  • PDF

Relevance-Weighted $(2D)^2$LDA Image Projection Technique for Face Recognition

  • Sanayha, Waiyawut;Rangsanseri, Yuttapong
    • ETRI Journal
    • /
    • 제31권4호
    • /
    • pp.438-447
    • /
    • 2009
  • In this paper, a novel image projection technique for face recognition application is proposed which is based on linear discriminant analysis (LDA) combined with the relevance-weighted (RW) method. The projection is performed through 2-directional and 2-dimensional LDA, or $(2D)^2$LDA, which simultaneously works in row and column directions to solve the small sample size problem. Moreover, a weighted discriminant hyperplane is used in the between-class scatter matrix, and an RW method is used in the within-class scatter matrix to weigh the information to resolve confusable data in these classes. This technique is called the relevance-weighted $(2D)^2$LDA, or RW$(2D)^2$LDA, which is used for a more accurate discriminant decision than that produced by the conventional LDA or 2DLDA. The proposed technique has been successfully tested on four face databases. Experimental results indicate that the proposed RW$(2D)^2$LDA algorithm is more computationally efficient than the conventional algorithms because it has fewer features and faster times. It can also improve performance and has a maximum recognition rate of over 97%.

유전자 알고리즘을 이용한 강인한 Support vector machine 설계 (Design of Robust Support Vector Machine Using Genetic Algorithm)

  • 이희성;홍성준;이병윤;김은태
    • 한국지능시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.375-379
    • /
    • 2010
  • Support vector machine (SVM)은 튼튼한 이론적 배경을 가지고 있고 구조적 위험을 성공적으로 최소화하기 때문에 추천가 시스템과 같은 다양한 패턴 인식 분야에서 사용되고 있다. 하지만 SVM이 초평면을 결정할 때 이상점들은 margin 손실들을 가지고 있기 때문에 이들은 초평면을 결정하는데 매우 중요한 역할을 하고 있다. 그 이유로 SVM은 이상점들에게 매우 민감한 문제점을 갖는다. 강인한 SVM을 위해 우리는 이상점들의 margin 손실의 최대치를 제한하지만 이것은 non-convex 최적화 문제를 포함한다. 따라서 본 논문에서는 non-convex 최적화 문제에 적합한 유전자 알고리즘을 이용하여 강인한 SVM을 설계하는 방법을 제안한다. 제안하는 알고리즘의 우수성을 보여주기 위하여 UCI repository에서 선택된 여러 데이터베이스들을 이용한 실험을 수행하였다.

Optimal SVM learning method based on adaptive sparse sampling and granularity shift factor

  • Wen, Hui;Jia, Dongshun;Liu, Zhiqiang;Xu, Hang;Hao, Guangtao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권4호
    • /
    • pp.1110-1127
    • /
    • 2022
  • To improve the training efficiency and generalization performance of a support vector machine (SVM) in a large-scale set, an optimal SVM learning method based on adaptive sparse sampling and the granularity shift factor is presented. The proposed method combines sampling optimization with learner optimization. First, an adaptive sparse sampling method based on the potential function density clustering is designed to adaptively obtain sparse sampling samples, which can achieve a reduction in the training sample set and effectively approximate the spatial structure distribution of the original sample set. A granularity shift factor method is then constructed to optimize the SVM decision hyperplane, which fully considers the neighborhood information of each granularity region in the sparse sampling set. Experiments on an artificial dataset and three benchmark datasets show that the proposed method can achieve a relatively higher training efficiency, as well as ensure a good generalization performance of the learner. Finally, the effectiveness of the proposed method is verified.

Support Vector Machine을 이용한 선에코 특성 분석 및 탐지 방법 (Analysis and Detection Method for Line-shaped Echoes using Support Vector Machine)

  • 이한수;김은경;김성신
    • 한국지능시스템학회논문지
    • /
    • 제24권6호
    • /
    • pp.665-670
    • /
    • 2014
  • SVM은 학습 데이터를 두 개의 집단으로 분리시키는 최적의 초평면을 찾는 이진 분류기로서 우수한 성능 때문에 다양한 분야에서 귀납 추론, 이진 분류, 예측 등을 목적으로 사용되는 알고리즘이다. 또한 대표적인 블랙박스 모델 중 하나이기 때문에 학습 후 생성되는 SVM의 해석에 대한 연구도 활발히 진행되고 있다. 본 논문에서는 SVM 알고리즘을 이용하여 기상 레이더의 데이터 내에 비교적 높은 빈도로 발생하여 기상 예보의 정확도를 감소시키는 비강수에코 중 하나인 선에코를 자동으로 탐지하는 방법에 대한 연구를 수행하였다. 학습 데이터로는 평균 반사도, 크기, 발생 형태, 중심 고도 등과 같은 특성을 활용하였는데, 이는 기상 레이더 데이터에 저장된 다양한 데이터 중 반사도 값을 선택한 후 클러스터링 기법을 통해 추출한 것이다. 이와 같이 학습된 SVM 분류기를 실제 사례를 바탕으로 하여 검증하였으며, Decision Tree 알고리즘을 적용하여 생성한 분류기의 해석을 수행하였다.