• 제목/요약/키워드: Decision -making Tree

검색결과 202건 처리시간 0.027초

e-CRM에서 개인화 향상을 위한 의사결정나무 사용에 관한 연구 (Study on the Application of Decision Trees for Personalization based on e-CRM)

  • 양정희;한서정
    • 대한안전경영과학회지
    • /
    • 제5권3호
    • /
    • pp.107-119
    • /
    • 2003
  • Expectation and interest about e-CRM are rising for more efficient customer management in on-line including electronic commerce. The decision-making tree can be used usefully as the data mining technology for e-CRM. In this paper, the representative decision making techniques, CART, C4.5, CHAID analyzed the differences in personalization point of view with actuality customer data through an experiment. With these analysis data, it is proposed a new decision-making tree system that has big advantage in personalization techniques. Through new system, it can get following advantage. First, it can form superior model more qualitatively in personalization by adding individual's weight value. Second it can supply information personalized more to customer. Third, it can have high position about customer's loyalty than other site of similar types of business. Fourth, it can reduce expense that cost marketing and decision-making. Fifth, it becomes possible that know that customer through smooth communication with customer who use personalized service wants and make from goods or service's quality to more worth thing.

A Study on the Classification of Variables Affecting Smartphone Addiction in Decision Tree Environment Using Python Program

  • Kim, Seung-Jae
    • International journal of advanced smart convergence
    • /
    • 제11권4호
    • /
    • pp.68-80
    • /
    • 2022
  • Since the launch of AI, technology development to implement complete and sophisticated AI functions has continued. In efforts to develop technologies for complete automation, Machine Learning techniques and deep learning techniques are mainly used. These techniques deal with supervised learning, unsupervised learning, and reinforcement learning as internal technical elements, and use the Big-data Analysis method again to set the cornerstone for decision-making. In addition, established decision-making is being improved through subsequent repetition and renewal of decision-making standards. In other words, big data analysis, which enables data classification and recognition/recognition, is important enough to be called a key technical element of AI function. Therefore, big data analysis itself is important and requires sophisticated analysis. In this study, among various tools that can analyze big data, we will use a Python program to find out what variables can affect addiction according to smartphone use in a decision tree environment. We the Python program checks whether data classification by decision tree shows the same performance as other tools, and sees if it can give reliability to decision-making about the addictiveness of smartphone use. Through the results of this study, it can be seen that there is no problem in performing big data analysis using any of the various statistical tools such as Python and R when analyzing big data.

의사결정수 기법을 이용한 교량확폭에 관한 의사결정모델 개발 (Decision Making Model for Widening Bridges Using Decision Tree Technique)

  • 조효남;박진형;선종완;윤만근
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권4호
    • /
    • pp.187-194
    • /
    • 2008
  • 도로교량의 경우 급속한 도시화로 인해 증가한 교통량을 처리하기 위해 교량확폭과 신설교량의 추가 건설 등의 방법이 사용되고 있다. 하지만 현재 국내에서는 확폭 또는 신설 교량의 추가건설의 타당성을 판단하기 위한 합리적인 절차나 기준이 마련되어 있지 않다. 또한 교량 확폭 공사 시에는 일반적인 교량신설 공사에 비해 불확실성을 내포한 사건들이 추가적으로 존재한다. 이에 본 논문에서는 의사결정수 방법을 이용해 교량확장에 따라 발생 가능한 사건의 기대 위험비용을 체계적으로 고려할 수 있는 개선된 형태의 생애주기비용 분석 모델을 제안하였다.

특징공간을 사선 분할하는 퍼지 결정트리 유도 (Fuaay Decision Tree Induction to Obliquely Partitioning a Feature Space)

  • 이우향;이건명
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권3호
    • /
    • pp.156-166
    • /
    • 2002
  • 결정트리 생성은 특징값들로 기술된 사례들로부터 분류 규칙을 추출하는 유용한 기계학습 방법중 하나이다. 결정트리는 특징공간을 분할하는 형태에 따라 단변수(univariate) 결정트리와 다변수(multivariate) 결정트리로 대별된다. 실제 현장에서 얻어지는 데이터는 관측오류, 불확실성, 주관적인 판단 등의 이유로 특징값 자체에 오류를 포함하는 경우가 많다. 이러한 오류에 대해 강건한 결정트리를 생성하기 위한 방법으로 퍼지 기법을 도입한 결정트리 생성 방법에 대한 연구가 진행되어 왔다. 현재까지 대부분의 퍼지 결정트리에 대한 연구는 단변수 결정트리에 퍼지 기법을 도입한 것들이며, 다변수 결정트리에 퍼지 기법을 적용한 것은 찾아보기 힘들다. 이 논문에서는 다변수 결정트리에 퍼지 기법을 적용하여 퍼지사선형 결정트리라고 하는 퍼지 결정트리를 생성하는 방법을 제안한다. 또한 제안한 결정트리 생성 방법의 특성을 보이기 위한 실험 결과를 보인다.

R&D 프로젝트 투자 의사결정을 위한 실물옵션 의사결정나무 모델 (Real Option Decision Tree Models for R&D Project Investment)

  • 최경현;조대명;정영기
    • 산업공학
    • /
    • 제24권4호
    • /
    • pp.408-419
    • /
    • 2011
  • R&D is a foundation for new business chance and productivity improvement leading to enormous expense and a long-term multi-step process. During the R&D process, decision-makers are confused due to the various future uncertainties that influence economic and technical success of the R&D projects. For these reasons, several decision-making models for R&D project investment have been suggested; they are based on traditional methods such as Discounted Cash Flow (DCF), Decision Tree Analysis (DTA) and Real Option Analysis (ROA) or some fusion forms of the traditional methods. However, almost of the models have constraints in practical use owing to limits on application, procedural complexity and incomplete reflection of the uncertainties. In this study, to make the constraints minimized, we propose a new model named Real Option Decision Tree Model which is a conceptual combination form of ROA and DTA. With this model, it is possible for the decision-makers to simulate the project value applying the uncertainties onto the decision making nodes.

연결강도분석을 이용한 통합된 부도예측용 신경망모형

  • 이웅규;임영하
    • 한국정보시스템학회:학술대회논문집
    • /
    • 한국정보시스템학회 2002년도 추계학술대회
    • /
    • pp.289-312
    • /
    • 2002
  • This study suggests the Link weight analysis approach to choose input variables and an integrated model to make more accurate bankruptcy prediction model. the Link weight analysis approach is a method to choose input variables to analyze each input node's link weight which is the absolute value of link weight between an input nodes and a hidden layer. There are the weak-linked neurons elimination method, the strong-linked neurons selection method in the link weight analysis approach. The Integrated Model is a combined type adapting Bagging method that uses the average value of the four models, the optimal weak-linked-neurons elimination method, optimal strong-linked neurons selection method, decision-making tree model, and MDA. As a result, the methods suggested in this study - the optimal strong-linked neurons selection method, the optimal weak-linked neurons elimination method, and the integrated model - show much higher accuracy than MDA and decision making tree model. Especially the integrated model shows much higher accuracy than MDA and decision making tree model and shows slightly higher accuracy than the optimal weak-linked neurons elimination method and the optimal strong-linked neurons selection method.

  • PDF

Multi-dimensional Contextual Conditions-driven Mutually Exclusive Learning for Explainable AI in Decision-Making

  • Hyun Jung Lee
    • 인터넷정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.7-21
    • /
    • 2024
  • There are various machine learning techniques such as Reinforcement Learning, Deep Learning, Neural Network Learning, and so on. In recent, Large Language Models (LLMs) are popularly used for Generative AI based on Reinforcement Learning. It makes decisions with the most optimal rewards through the fine tuning process in a particular situation. Unfortunately, LLMs can not provide any explanation for how they reach the goal because the training is based on learning of black-box AI. Reinforcement Learning as black-box AI is based on graph-evolving structure for deriving enhanced solution through adjustment by human feedback or reinforced data. In this research, for mutually exclusive decision-making, Mutually Exclusive Learning (MEL) is proposed to provide explanations of the chosen goals that are achieved by a decision on both ends with specified conditions. In MEL, decision-making process is based on the tree-based structure that can provide processes of pruning branches that are used as explanations of how to achieve the goals. The goal can be reached by trade-off among mutually exclusive alternatives according to the specific contextual conditions. Therefore, the tree-based structure is adopted to provide feasible solutions with the explanations based on the pruning branches. The sequence of pruning processes can be used to provide the explanations of the inferences and ways to reach the goals, as Explainable AI (XAI). The learning process is based on the pruning branches according to the multi-dimensional contextual conditions. To deep-dive the search, they are composed of time window to determine the temporal perspective, depth of phases for lookahead and decision criteria to prune branches. The goal depends on the policy of the pruning branches, which can be dynamically changed by configured situation with the specific multi-dimensional contextual conditions at a particular moment. The explanation is represented by the chosen episode among the decision alternatives according to configured situations. In this research, MEL adopts the tree-based learning model to provide explanation for the goal derived with specific conditions. Therefore, as an example of mutually exclusive problems, employment process is proposed to demonstrate the decision-making process of how to reach the goal and explanation by the pruning branches. Finally, further study is discussed to verify the effectiveness of MEL with experiments.

로지스틱 회귀분석과 의사결정나무 분석을 이용한 일 대도시 주민의 우울 예측요인 비교 연구 (Comparative Analysis of Predictors of Depression for Residents in a Metropolitan City using Logistic Regression and Decision Making Tree)

  • 김수진;김보영
    • 한국콘텐츠학회논문지
    • /
    • 제13권12호
    • /
    • pp.829-839
    • /
    • 2013
  • 본 연구는 로지스틱 회귀분석과 의사결정나무 분석을 활용하여 일 대도시 주민의 우울에 영향을 주는 요인을 예측하고 비교하고자 시도된 서술적 조사연구이다. 연구대상은 20세에서 65세 미만의 일 대도시 주민 462명이었다. 자료 수집은 2011년 10월 7일부터 10월 21일까지이었으며, 자료 분석은 SPSS 18.0 프로그램을 이용하여 빈도, 백분율, 평균과 표준편차 및 ${\chi}^2$-test, t-test, 로지스틱 회귀분석, roc curve, 의사결정나무 분석으로 분석하였다. 본 연구 결과, 로지스틱 회귀분석과 의사결정나무 분석에서 공통적으로 나타난 우울 예측요인은 사회부적응, 주관적 신체증상 및 가족 지지이었다. 로지스틱 회귀분석에서 특이도 93.8%, 민감도 42.5%이었고, 본 연구의 모형 적합도를 roc curve 검증 한 결과 AUC=.84으로 본 연구 모형은 적합(p=<.001)하다고 할 수 있다. 우울예측에 대한 의사결정나무 분석은 분류에 대한 예측 정확도에서 특이도 98.3%, 민감도 20.8%이었고, 전체 분류 정확도는 로지스틱 회귀분석은 82.0%, 의사결정나무 분석은 80.5% 이었다. 본 연구 결과 민감성과 분류 정확도와 더 높게 나타난 로지스틱 회귀분석 방법이 지역 주민의 우울 예측 모형을 구축하는데 더 유용한 자료로 사용될 수 있으리라 사료된다.

가뭄관리를 위한 수문학적 의사결정에 관한 연구 : 2. 가뭄관리를 위한 의사결정 방법 (A Study on the Hydrologic Decision-Making for Drought Management : 2. Decision-Making Method for Drought Management)

  • 강인주;윤용남
    • 한국수자원학회논문집
    • /
    • 제35권5호
    • /
    • pp.597-609
    • /
    • 2002
  • 본 연구에서는 과거 가뭄분석에 의해 가뭄관리 기준을 설정하고 가룰 진행 상황에 따라 가룸을 감시 및 관리하는 의사결정 방법을 제시하고자 한다. 이를 위하여 의사결정분기도를 작성하여 분석을 수행하고, 가뭄의 정도에 따라 구체적인 단계별 조치방안을 제안한다. 즉, 월강수의 전이확률과 강수량에 의하여 의사결정분기도를 작성하여 분석을 수행함으로써 가뭄의 진행상황을 파악해 가뭄주의보, 가뭄경보, 가뭄의 비상대책 등 3가지의 단계별 조치기준을 설정하는 것이다. 본 연구에서 제안된 방법은 다근 지역에서도 이용이 가능할 뿐 아니라 목적에 따라 분기도를 변환하여 이용할 수도 있을 것이다. 또한 지속적으로 기상자료를 보완하여 월 Parmer 지수(PDSI)의 등급 선정과 깅수량 분석을 수행할수 있어 보완된 의사결정분기도에 의한 기준값을 제공함으로써 계속적인 가뭄관리가 가능할 것으로 판단된다.