• Title/Summary/Keyword: Decentralized Controller

Search Result 160, Processing Time 0.028 seconds

Decentralized Load-Frequency Control of Interconnected Power Systems with SMES Units and Governor Dead Band using Multi-Objective Evolutionary Algorithm

  • Ganapathy, S.;Velusami, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.443-450
    • /
    • 2009
  • This paper deals with the design of decentralized controller for load-frequency control of interconnected power systems with superconducting magnetic energy storage units and Governor Dead Band Nonlinearity using Multi-Objective Evolutionary Algorithm. The superconducting magnetic energy storage unit exhibits favourable damping effects by suppressing the frequency oscillations as well as stabilizing the inter-area oscillations effectively. The proposed control strategy is mainly based on a compromise between Integral Squared Error and Maximum Stability Margin criteria. Analysis on a two-area interconnected thermal power system reveals that the proposed controller improves the dynamic performance of the system and guarantees good closed-loop stability even in the presence of nonlinearities and with parameter changes.

Output feedback, decentralized controller design for an active suspension system using 7 DOF full car model (7 자유도 차량 모델과 출력 되먹임을 이용한 자동차 능동 현가장치 설계에 관한 연구)

  • 노태수;정길도;홍동표
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.871-875
    • /
    • 1996
  • The Output feedback linear quadratic regulator control is applied to the design of active suspension system using 7 DOF full car model. The performance index reflects the vehicle vertical movement, pitch and roll motion, and minimization of suspension stroke displacements in the rattle space. The elements of gain matrix are approximately decoupled so that each suspension requires only local information to generate the control force. The simulation results indicates that the output feedback LQ controller is more effective than purely passive or full state feedback active LQ controllers in following the road profile at the low frequency range and suppressing the road disturbance at the high frequency ranges.

  • PDF

DECENTRALIZE)) ADAPTIVE CONTROL FOR ROBOT MANIPULATOR (로보트 매니퓰레이터의 비집중 적응제어)

  • Lee, Sang-Cheol;Chung, Chan-Su
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.504-509
    • /
    • 1990
  • This paper presents a decentralized adaptive control scheme for multi-Joint robot manipulators based on the independent joint control scheme. The control object is to achieve accurate tracking of desired Joint trajectories. The proposed control scheme does not use the complex manipulator dynamic model, and each joint is controlled simple by a feedback controller which ensure stable and also a position-velocity-acceleration feedforward controller and also auxiliary signal, with adjustable gains. Simulation results are given for a two-link manipulator under independent control, proposed decentralized adaptive control of manipulator is feasible. In spite of a pay load variation and strong static and dynamic couplings that exist between the joints.

  • PDF

Variable structure control of a magnetic bearing (마그네틱 베어링의 가변구조제어)

  • 이대종;박장환;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.419-422
    • /
    • 1996
  • In this paper, we consider variable structure controller design of a active magnetic bearing(AMB). In particular, we design a switching hyperplane, considering coupling characteristic among each magnet. This method is designed by applying decentralized control method. Controller design consist of two factors that is, one is linear control part to drive state variables to zero asymptotically and the other is a nonlinear controller part to maintain within neighborhood of switching hyperplane. Finally, A control method designed here is checked by simulation, which shows good results.

  • PDF

A Study on the Synthesis of Decentralized Stabilizing controller for Large Scale Discrete-time Systems with Delays in Interconnections (시간지연이 상호간섭에 존재하는 대규모 선형 이산시간 시스템의 비집중 안정화 제어장치의 설계에 관한 연구)

  • 서일홍;변증남
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.6
    • /
    • pp.1-8
    • /
    • 1981
  • A new desio method of decentraliaed stabilizing controller is proposed for large scale discretetime systems with delays in interconnections. Gain parameters of the local stabilizing controller are determined by utilizing the well-knowon Nyquist array technique in the complex q-plane, where .

  • PDF

Formation Geometry Center based Formation Controller Design using Lyapunov Stability Theorem

  • Lee, Ji-Eun;Kim, Hyeong-Seok;Kim, You-Dan;Han, KiHoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.71-78
    • /
    • 2008
  • New formation flight controller for unmanned aerial vehicles is proposed. A behavioral decentralized control approach called formation geometry center control is adopted. Trajectory tracking as well as formation geometry keeping are the purpose of the formation flight, and therefore two controllers are designed: a trajectory tracking controller for reference trajectory tracking, and a position controller for formation geometry keeping. Each controller is designed using Lyapunov stability theorem to guarantee the asymptotic stability. Formation flight controller is finally obtained by combining the trajectory tracking controller and the formation geometry keeping controller using a weighting parameter that depends on the relative distance error between unmanned aerial vehicles. Numerical simulations are performed to validate the performance of the proposed controller.

An Overview of Learning Control in Robot Applications

  • Ryu, Yeong-Soon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.6-10
    • /
    • 1996
  • This paper presents an overview of research results obtained by the authors in a series of publications. Methods are developed both for time-varying and time-invariant for linear and nonlinear. for time domain and frequency domain . and for discrete-time and continuous-time systems. Among the topics presented are: 1. Learning control based on integral control concepts applied in the repetition domain. 2. New algorithms that give improved transient response of the indirect adaptive control ideas. 4. Direct model reference learning control. 5 . Learning control based frequency domain. 6. Use of neural networks in learning control. 7. Decentralized learning controllers. These learning algorithms apply to robot control. The decentralized learning control laws are important in such applications becaused of the usual robot decentralized controller structured.

  • PDF

Sampled-Data Observer-Based Decentralized Fuzzy Control for Nonlinear Large-Scale Systems

  • Koo, Geun Bum;Park, Jin Bae;Joo, Young Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.724-732
    • /
    • 2016
  • In this paper, a sampled-data observer-based decentralized fuzzy control technique is proposed for a class of nonlinear large-scale systems, which can be represented to a Takagi-Sugeno fuzzy system. The premise variable is assumed to be measurable for the design of the observer-based fuzzy controller, and the closed-loop system is obtained. Based on an exact discretized model of the closed-loop system, the stability condition is derived for the closed-loop system. Also, the stability condition is converted into the linear matrix inequality (LMI) format. Finally, an example is provided to verify the effectiveness of the proposed techniques.

Decentralized Stabilization for Uncertain Discrete-Time Large-Scale Systems with Delays in Interconnections and Controller Gain Perturbations (제어기의 이득 섭동을 갖는 이산 시간지연 대규모 시스템을 위한 강인 비약성 제어기)

  • Park, Ju-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.5
    • /
    • pp.8-17
    • /
    • 2002
  • This paper considers the problems of robust decentralized control for uncertain discrete-time large-scale systems with delays in interconnections and state feedback gain perturbations. Based on the Lyapunov method, the state feedback control design for robust stability is given in terms of solutions to a linear matrix inequality (LMI), and the measure of non-fragility in controller is presented. The solutions of the LMI can be easily obtained using efficient convex optimization techniques. A numerical example is included to illustrate the design procedures.

A Decentralized Control Technique for Experimental Nonlinear Helicopter Systems (헬리콥터 시스템의 퍼지 분산 제어기 설계)

  • Kim, Moon-Hwan;Park, Jin-Bae;Lee, Ho-Jae;Cha, Dae-Bum;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.80-84
    • /
    • 2002
  • This paper proposes a decentralized control technique for 2-dimensional experimental helicopter systems. The decentralized control technique is especially suitable in large-scale control systems. We derive the stabilization condition for the interconnected Takagi-Sugeno (TS) fuzzy system using the rigorous tool-Lyapunov stability criterion and formulate the controller design condition in terms of linear matrix inequality (LMI). To demonstrate the feasibility of the proposed method, we include the experiment result as well as a computer simulation one, which strongly convinces us the applicability to the industry.