• 제목/요약/키워드: Decay Heat

검색결과 254건 처리시간 0.02초

전산유체역학을 이용한 소듐-소듐 열교환기 설계코드의 검증 (VALIDATION OF A DESIGN CODE FOR SODIUM-TO-SODIUM HEAT EXCHANGERS BY UTILIZING COMPUTATIONAL FLUID DYNAMICS)

  • 김대희;어재혁;이태호
    • 한국전산유체공학회지
    • /
    • 제21권1호
    • /
    • pp.19-29
    • /
    • 2016
  • A Prototype Gen-IV Sodium-cooled Fast Reactor which is one of the $4^{th}$ generation nuclear reactors is in development by Korea Atomic Energy Research Institute. The reactor is composed of four main fluid systems which are categorized by its functions, i.e., Primary Heat Transport System, Intermediate Heat Transport System, Decay Heat Removal System and Sodium-Water Reaction Pressure Relief System. The coolant of the reactor is liquid sodium and sodium-to-sodium heat exchangers are installed at the interfaces between two fluid systems, Intermediate Heat Exchangers between the Primary Heat Transport System and the Intermediate Heat Transport System and Decay Heat Exchangers between the Primary Heat Transport System and the Decay Heat Removal System. For the design and performance analysis of the Intermediate Heat Exchanger and the Decay Heat Exchanger, a computer code was written during previous step of research. In this work, the computer code named "SHXSA" has been validated preliminarily by computational fluid dynamics simulations.

SAFETY ASPECTS OF INTERMEDIATE HEAT TRANSPORT AND DECAY HEAT REMOVAL SYSTEMS OF SODIUM-COOLED FAST REACTORS

  • CHETAL, SUBHASH CHANDER
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.260-266
    • /
    • 2015
  • Twenty sodium-cooled fast reactors (SFRs) have provided valuable experience in design, licensing, and operation. This paper summarizes the important safety criteria and safety guidelines of intermediate sodium systems, steam generators, decay heat removal systems and associated construction materials and in-service inspection. The safety criteria and guidelines provide a sufficient framework for design and licensing, in particular by new entrants in SFRs.

Machine learning of LWR spent nuclear fuel assembly decay heat measurements

  • Ebiwonjumi, Bamidele;Cherezov, Alexey;Dzianisau, Siarhei;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3563-3579
    • /
    • 2021
  • Measured decay heat data of light water reactor (LWR) spent nuclear fuel (SNF) assemblies are adopted to train machine learning (ML) models. The measured data is available for fuel assemblies irradiated in commercial reactors operated in the United States and Sweden. The data comes from calorimetric measurements of discharged pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies. 91 and 171 measurements of PWR and BWR assembly decay heat data are used, respectively. Due to the small size of the measurement dataset, we propose: (i) to use the method of multiple runs (ii) to generate and use synthetic data, as large dataset which has similar statistical characteristics as the original dataset. Three ML models are developed based on Gaussian process (GP), support vector machines (SVM) and neural networks (NN), with four inputs including the fuel assembly averaged enrichment, assembly averaged burnup, initial heavy metal mass, and cooling time after discharge. The outcomes of this work are (i) development of ML models which predict LWR fuel assembly decay heat from the four inputs (ii) generation and application of synthetic data which improves the performance of the ML models (iii) uncertainty analysis of the ML models and their predictions.

PHRAGMEN-LINDELOF AND CONTINUOUS DEPENDENCE TYPE RESULTS IN GENERALIZED DISSIPATIVE HEAT CONDUCTION

  • Song, Jong-Chul;Yoon, Dall-Sun
    • 대한수학회지
    • /
    • 제35권4호
    • /
    • pp.945-960
    • /
    • 1998
  • This paper is concerned with investigating the asymptotic behavior of end effects for a generalized heat conduction problem with an added dissipation term defined on a three-dimensional semi-infinite cylinder. With homogeneous Dirichlet conditions on the lateral surface of the cylinder it is shown that solutions either grow exponentially or decay exponentially in the distance from the finite end of the cylinder. In particular, to render decay estimate explicit, we pattern after the analysis of Payne and Song [13, 15]. The continuous dependence effect of perturbing the equations parameters is also investigated.

  • PDF

MANAGING A PROLONGED STATION BLACKOUT CONDITION IN AHWR BY PASSIVE MEANS

  • Kumar, Mukesh;Nayak, A.K.;Jain, V;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.605-612
    • /
    • 2013
  • Removal of decay heat from an operating reactor during a prolonged station blackout condition is a big concern for reactor designers, especially after the recent Fukushima accident. In the case of a prolonged station blackout condition, heat removal is possible only by passive means since no pumps or active systems are available. Keeping this in mind, the AHWR has been designed with many passive safety features. One of them is a passive means of removing decay heat with the help of Isolation Condensers (ICs) which are submerged in a big water pool called the Gravity Driven Water Pool (GDWP). The ICs have many tubes in which the steam, generated by the reactor core due to the decay heat, flows and condenses by rejecting the heat into the water pool. After condensation, the condensate falls back into the steam drum of the reactor. The GDWP tank holds a large amount of water, about 8000 $m^3$, which is located at a higher elevation than the steam drum of the reactor in order to promote natural circulation. Due to the recent Fukushima type accidents, it has been a concern to understand and evaluate the capability of the ICs to remove decay heat for a prolonged period without escalating fuel sheath temperature. In view of this, an analysis has been performed for decay heat removal characteristics over several days of an AHWR by ICs. The computer code RELAP5/MOD3.2 was used for this purpose. Results indicate that the ICs can remove the decay heat for more than 10 days without causing any bulk boiling in the GDWP. After that, decay heat can be removed for more than 40 days by boiling off the pool inventory. The pressure inside the containment does not exceed the design pressure even after 10 days by condensation of steam generated from the GDWP on the walls of containment and on the Passive Containment Cooling System (PCCS) tubes. If venting is carried out after this period, the decay heat can be removed for more than 50 days without exceeding the design limits.

12개월 야외 내후성 시험에 의한 과열증기 열처리된 낙엽송재의 열화 평가 (Evaluation of Deterioration of Larix kaempferi Wood Heat-treated by Superheated Steam through Field Decay Test for 12 Months)

  • Park, Yonggun;Han, Yeonjung;Park, Jun-Ho;Chung, Hyunwoo;Kim, Hyunbin;Yang, Sang-Yun;Chang, Yoon-Seong;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권5호
    • /
    • pp.497-510
    • /
    • 2018
  • 본 연구에서는 과열증기를 이용하여 열처리한 낙엽송재의 야외 내후성 시험을 통해 부후균과 해충에 대한 저항성을 평가하였다. 12개월간 진행된 야외 내후성 시험 결과, 무처리재는 흰개미에 의한 피해가 두드러지게 나타났지만 방부목재와 과열증기 열처리재에서는 육안으로 관찰되는 피해는 발견되지 않았다. 무처리재와 방부목재는 약 5%의 질량 감소를 보였으며, 과열증기 열처리재는 약 1%의 질량 감소를 보였다. 야외 내후성 시험이 진행된 후 방부목재에 남아있는 방부약제의 함량이 야외 내후성 시험 전보다 감소한 것으로 보아 야외 내후성 시험이 진행되는 동안 방부약제가 일부 용출된 것으로 보이며, 이에 따라 방부목재의 질량 감소가 무처리재와 유사한 수준으로 나타난 것으로 생각되었다. 과열증기를 이용한 열처리는 방부약제 주입과 같은 화학적인 처리 없이 친환경적으로 목재의 부후균과 해충에 대한 저항성을 개선시킬 수 있는 가능성이 확인되었으며, 이를 위하여 장기적인 관찰이 추가적으로 필요할 것이라 생각된다.

Characteristics of Reduced Metal from Spent Oxide Fuel by Lithium

  • Kim Ik-Soo;Seo Chung-Seok;Shin Hee-Sung;Hwang Yong-Soo;Park Seong-Won
    • Nuclear Engineering and Technology
    • /
    • 제35권4호
    • /
    • pp.309-317
    • /
    • 2003
  • The mass balance of the unit processes of the Advanced spent fuel Conditioning Process was calculated to obtain basic information. Based on this mass balance, the changes in decay heat and radioactivity of the spent fuel due to the metallization in the high temperature molten salt system were estimated. The decay heat and the radioactivity were calculated by using the ORIGEN2 computer code, and the result showed that the decay heat and the radioactivity of the metallized spent fuel ingot were $24.27\%\;and\;24.24\%$, respectively, compared to those of oxide spent fuel.

COMPARISON OF THE DECAY HEAT REMOVAL SYSTEMS IN THE KALIMER-600 AND DSFR

  • Ha, Kwi-Seok;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • 제44권5호
    • /
    • pp.535-542
    • /
    • 2012
  • A sodium-cooled demonstration fast reactor with the KALIMER-600 as a reference plant is under design by KAERI. The safety grade decay heat removal system (DHRS), which is important to mitigate design basis accidents, was changed in the reactor design. A loss of heat sink and a vessel leak in design basis accidents were simulated using the MARS-LMR system transient analysis code on two plant systems. In the analyses, the DHRS of KALIMER-600 had a weakness due to elevation of the overflow path for the DHRS operation, while it was proved that the DHRS of the demonstration reactor had superior heat transfer characteristics due to the simplified heat transfer mechanism.

장기관리 핵연료로부터 방출되는 붕괴열량 추정 (Estimation of Decay Heat Generated from Long-Term Management of Spent Fuel)

  • Park, J.W.;J.H.Whang;Chun, K.S.;Park, H.S.
    • Nuclear Engineering and Technology
    • /
    • 제21권1호
    • /
    • pp.48-55
    • /
    • 1989
  • 본 논고에서는 국내의 PWR 및 CANDU 사용후 핵연료로부터 발생하는 붕괴열의 장기적인 거동을 보다 손쉽게 분석하기 위하여 붕귀열을 추정할 수 있는 간단한 근사식을 도출하였다. 근사식의 장기적인 붕괴열 추정에서 ORIGEN 2코드 결과와의 차이를 줄이고 중요한 변수 조건하에서도 붕괴열을 추정할 수 있도록 하기 위하여 민감도 분석을 수행하였다. 그 결과로서 얻어진 근사식은 사용후 핵연료의 이력자료중 중요변수인 연도를 포함함으로써 3~500년정도의 냉각시간 범위내에서는 임의의 연소도를 가진 사용후 핵연료의 붕괴열이라도 추정할 수 있게 되었다. 그리고 대표적으로 30, 37 및 40 GWD/MTU등의 연소도를 갖는 사용후 핵연료의 붕괴열 추정에 있어서는 1년부터 $10^{5}$ 년까지의 냉각시간에 따라 ORIGEN2 ,코드의 결과와 $\pm$10%이내의 차이를 보이고 있어 사용후 핵연료 관리를 위한 관련시설의 열적설계 및 평가 등과 같은 공학적 목적에 유용하게 사용될 수 있을 것이다.

  • PDF

소듐냉각고속로 붕괴열교환기의 고온 설계 및 건전성 평가 (High-Temperature Design and Integrity Evaluation of Sodium-Cooled Fast Reactor Decay Heat Exchanger)

  • 이형연;어재혁
    • 대한기계학회논문집A
    • /
    • 제37권10호
    • /
    • pp.1251-1259
    • /
    • 2013
  • 본 연구에서는 소듐냉각 고속로 붕괴열교환기(DHX)의 고온 설계 및 크리프-피로 손상 평가를 수행하였다. 제 4 세대 소듐냉각 고속로의 능동 및 피동 잔열제거계통에 설치되는 DHX와 한국원자력연구원의 STELLA-1 시험루프에 설치된 DHX에 대해 상세설계 및 3D 유한요소해석을 수행하고, 동 결과에 기초하여 고온설계 기술기준인 ASME Section III Subsection NH와 RCC-MR 코드를 따라 크리프-피로 손상평가를 수행하였다. 크리프-피로 손상평가 결과에 기초하여 두 설계기준에 대해 비교 분석하고, 설계 기술기준의 보수성 이슈에 대해 토의하였다.