• Title/Summary/Keyword: Dead cells

Search Result 251, Processing Time 0.027 seconds

Cold Shock Response and Low Temperature Stable Transcript of DEAD-box RNA Helicase in Bacillus subtilis (DEAD-box RNA Helicase 유전자가 결핍된 Bacillus subtilis의 저온 충격 반응성과 저온 안정성 전사물)

  • Oh, Eun-Ha;Lee, Sang-Soo
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.289-294
    • /
    • 2011
  • We investigated the cold shock sensitivity of DEAD-box RNA helicase gene deleted strains of in Bacillus subtilis CU1065. To understand cold shock effects, cells were cultivated at $37^{\circ}C$ to log phase ($O.D_{600}$=0.5-0.6) and then temperature was shifted to $15^{\circ}C$. Cold shock slow down the growth rate of wild type and deleted strains of DEAD-box RNA helicase gene (ydbR, yfmL, yqfR, deaD). The growth rate of ydbR deleted strain is 5 times severely reduced compared to that of wild type strain (CU1065). But the growth rate of other three (yfmL, yqfR, deaD) deleted strains is nearly equal to the growth rate of wild type. Compared to $37^{\circ}C$, the amount of ydbR and yqfR mRNA transcripts are increased at the growth temperature of $15^{\circ}C$. On the other hands the mRNA transcripts of yfmL and deaD are not changed at both conditions of $37^{\circ}C$ and $15^{\circ}C$. Upon cold shock treatment ydbR mRNA transcript is clearly increased. After treatment of rifampicin (bacteria transcription inhibitor) the amount of ydbR mRNA was measured. Temperature shift from $37^{\circ}C$ to $15^{\circ}C$ and rifampicin treatment showed slowly decay of ydbR mRNA. But at $37^{\circ}C$ and rifampicin treatment ydbR mRNA is rapidly reduced. These results showed that cold shock induction of ydbR mRNA resulted from the stability of ydbR mRNA and not from the transcription induction of ydbR. In relation to these results, we found the cold box element of csp (cold shock protein gene) in 5' untranslated region of ydbR gene. Cold shock induction of ydbR is caused by the stability of ydbR mRNA like the stability of csp mRNA.

An occurrence of canine herpesvirus infection in Korea (Canine herpesvirus(CHV) 감염증의 자연발생예 관찰과 감염실험)

  • Kim, Ok-jin;Bak, Ung-bok;An, Soo-hwan;Kim, Du-hee;Shin, Jin-ho
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.2
    • /
    • pp.217-225
    • /
    • 1992
  • Five puppies, 14 days old in the same litter showed acute symptoms such as painful crying, anorexia, abdominal pain and depression with fatal terminations. Necropsy of a puppy revealed hemorrhagic and necrotic foci in the lungs and kidney. The histological lesions were characterized with fibro-necrotizing foci in the lungs, nonsuppurative encephalitis and intranuclear inclusions of liver cells. A cytopathogenic agent was isolated from the thoracic fluid of a dead puppy by cell culture with primary dog kidney cells. The puppies inoculated with the field isolate showed the same clinical signs and lesions as those of the spontaneous cases. Viral particles were observed in suspension of the isolated agent by electron microscopy. The primary dog kidney cells infected with the field isolate showed fluorescent foci against anti-CHV monoclonal antibody after FA stain. On these findings of the disease it was diagnosed as CHV infection. The report signifies the first description of an epizootic of CHV infection in Korea.

  • PDF

Effect of Mylabris phalerata on colorectaladenocarcinoma cells (SNU-C5 cell lines) (반모가 대장암세포에 미치는 영향)

  • Kim, Jin-Sung;Yoon, Sang-Hyub;Ryu, Bong-Ha;Ryu, Ki-Won;Kim, Hyeon-Yil
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.214-223
    • /
    • 2004
  • The study examines the anti-cancer effects of the hot water extract of Mylabris phalerata(MP) using SNU-C5 cell lines. Microscopic analysis showed that 12 hours after MP treatment, the number of dead cells increased prominently. Significant cell death was observed 12, 24, and 48 hours after MP treatment through trypan blue exclusion testing. This suggests that MP is time-dependently cytotoxic. Mitotracker Red CMXRos staining and flowcytometry revealed that MP decreased mitochondrial membrane potentials. The absence of peaks on PI staining showed that DNA damage occurred in MP treated cells. Taken together, measurements suggest that MP has a strong anti-cancer effect on SNU-5 cell lines, and that this is likely to be due to the destruction of mitochondria and DNA damage.

  • PDF

Bacterial Dynamics of Biofilm Development During Toluene Degradation by Burkholderia vietnamiensis G4 in a Gas Phase Membrane Bioreactor

  • Kumar, Amit;Dewulf, Jo;Wiele, Tom Van De;Langenhove, Herman Van
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.1028-1033
    • /
    • 2009
  • In this study, the dynamics of living cells (LC) and dead cells (DC) in a laboratory-scale biofilm membrane bioreactor for waste gas treatment was examined. Toluene was used as a model pollutant. The bacterial cells were enumerated as fluoromicroscopic counts during a 140 operating day period using BacLight nucleic acid staining in combination with epifluorescence and confocal laser scanning microscopy (CSLM). Overall, five different phases could be distinguished during the biofilm development: (A) cell attachment, (B) pollutant limitation, (C) biofilm establishment and colonization, (D) colonized biofilm, and (E) biofilm erosion. The bioreactor was operated under different conditions by applying different pollutant concentrations. An optimum toluene removal of 89% was observed at a loading rate of 14.4 kg $m^{-3}d^{-1}$. A direct correlation between the biodegradation rate of the reactor and the dynamics of biofilm development could be demonstrated. This study shows the first description of biofilm development during gaseous toluene degradation in MBR.

Nanotextured Si Solar Cells on Microtextured Pyramidal Surfaces by Silver-assisted Chemical Etching Process

  • Parida, Bhaskar;Choi, Jaeho;Palei, Srikanta;Kim, Keunjoo;Kwak, Seung Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.212-220
    • /
    • 2015
  • We investigated nanotextured Si solar cells using the silver-assisted chemical etching process. The nanotexturing process is very sensitive to the concentration of chemical etching solution. The high concentration process results in a nanowire formation for the nanosurfaces and causes severe surface damage to the top region of the micropyramids. These nanowires show excellent light absorption in photoreflectance spectra and radiative light emission in photoluminescence spectra. However, the low concentration process forms a nano-roughened surface and provides high minority carrier lifetimes. The nano-roughened surfaces of the samples show the improved electrical cell properties of quantum efficiency, conversion efficiency, and cell fill factor due to the reduction in the formation of the over-doped dead layer.

Mitochondrial Complex I Inhibition Accelerates Amyloid Toxicity

  • Joh, Yechan;Choi, Won-Seok
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.417-424
    • /
    • 2017
  • Alzheimer's disease (AD) is neurodegenerative disease, characterized by the progressive decline of memory, cognitive functions, and changes in personality. The major pathological features in postmortem brains are neurofibrillary tangles and amyloid beta ($A{\beta}$) deposits. The majority of AD cases are sporadic and age-related. Although AD pathogenesis has not been established, aging and declining mitochondrial function has been associated. Mitochondrial dysfunction has been observed in AD patients' brains and AD mice models, and the mice with a genetic defect in mitochondrial complex I showed enhanced $A{\beta}$ level in vivo. To elucidate the role of mitochondrial complex I in AD, we used SH-SY5Y cells transfected with DNA constructs expressing human amyloid precursor protein (APP) or human Swedish APP mutant (APP-swe). The expression of APP-swe increased the level of $A{\beta}$ protein in comparison with control. When complex I was inhibited by rotenone, the increase of ROS level was remarkably higher in the cells overexpressing APP-swe compared to control. The number of dead cell was significantly increased in APP-swe-expressing cells by complex I inhibition. We suggest that complex I dysfunction accelerate amyloid toxicity and mitochondrial complex I dysfunction in aging may contribute to the pathogenesis of sporadic AD.

A staining method to determine marine microplanktonic organism viability and investigate the efficacy of a ship's ballast water treatment system (선박평형수 처리장치 효율 검증을 위한 해양미소부유생물 생사판별기법)

  • Baek, Seung Ho;Shin, kyoungsoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4328-4334
    • /
    • 2015
  • We determined a method to determine marine planktonic organism viability using Evan's blue, Aniline blue, and 5-choromethyfluorescein diacetate (CMFDA). The Evan's blue and Aniline blue methods produced bright blue light for dead phytoplankton and zooplankton and were the best dyes to detect dead cells. The staining efficiency of Evan's blue and Aniline blue were ${\geq}90%$ of the original field sample. However, it was difficult to test the efficiency of a ship's ballast water treatment system because detection of living cells. In contrast, the CMFDA method, which is based on measuring cell esterase activity using a fluorimetric stain, was the best dye to detect live cells of almost all phytoplankton species, and staining efficiency was 70%. The CMFDA method is similar to the fluorescein diacetate (FDA) staining method. Therefore, we estimated viability of phytoplankton species using a double-staining method by combining CMFDA and FDA to determine optimum staining efficiency. As a result, the frequency of dying cells based on the double-staining method was 95%, which was significantly higher than that of single CMDFA staining. Our results suggest that a CMDFA + FDA assay is more effective to determine survival of marine plankton and that this method was applicable to investigate the efficacy of a ship's ballast water treatment system.

Induction of apoptosis by methanol extracts of Ficus carica L. in FaDu human hypopharynx squamous carcinoma cells

  • Lee, Seul Ah;Park, Bo-Ram;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.99-106
    • /
    • 2020
  • Ficus carica L. (fig) is one of the first cultivated crops and is as old as humans. This plant has been extensively used as a traditional medicine for treating diseases, such as cough, indigestion, nutritional anemia, and tuberculosis. However, the physiological activity of fig leaves on oral cancer is as yet unknown. In this study, we investigated the anticancer effect of methanol extracts of Ficus carica (MeFC) and the mechanism of cell death in human FaDu hypopharyngeal squamous carcinoma cells. MeFC decreased the viability of oral cancer (FaDu) cells but did not affect the viability of normal (L929) cells, as determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay and Live and Dead assay. In addition, MeFC induced apoptosis through the proteolytic cleavage of procaspase-3, -9, poly (ADP-ribose) polymerase (PARP), downregulation of Bcl-2, and upregulation of Bax, as determined by 4′,6-diamidino-2-phenylindole dihydrochloride staining and western blot analysis. Moreover, a concentration of MeFC without cytotoxicity (0.25 mg/mL) significantly suppressed colony formation, a hallmark of cancer development, and completely inhibited the colony formation at 1 mg/mL. Collectively, these results suggest that MeFC exhibits a potent anticancer effect by suppressing the growth of oral cancer cells and colony formation via caspase- and mitochondrial-dependent apoptotic pathways in FaDu human hypopharyngeal squamous carcinoma cells. Therefore, the methanol extract of Ficus carcica leaves provide a natural chemotherapeutic drug for human oral cancer.

Construction and Characterization of Novel Expression Vectors for Genetic Adipose Tissue Ablation

  • Ko, Duck Sung;Choi, Woong Hwan;Kim, Chul Geun
    • Animal cells and systems
    • /
    • v.2 no.2
    • /
    • pp.249-258
    • /
    • 1998
  • Obesity, one of the most common metabolic diseases in industrial countries is characterized by an increase in the number or size of adipocytes. In an effort to create transgenic mouse models for the study of obesity we developed a novel technique in which adipose tissue can be ablated genetically at will, at any specific developmental stage and/or physiological condition, by the treatment of ganciclovir. We made a series of adipocytespecific expression vectors using minimal regulatory regions of brown adipocyte-specific uncoupling protein (UCP-1) gene and adipocyte-specific aP2 gene, and then analyzed their expression characteristics in cultured cell lines. When both constructs pUCP-LacZ and paP2-LacZ were transfected transiently into differentiating 3T3-L1 (pre-while adipocytes) and HIB-1B (pre-brown adipocytes) cell lines in vitro and then monitored by X-gal staining of cells, these regulatory regions were sufficient to show proper differentiation stage-specific expression in adipocvtes. To confirm that adipocytes expressing HSV-TK controlled by these minimal requlatory elements are sufficient to kill themselves with ganciclovir treatment pUCP-TK and paP2-TK expression constructs were transfected stably into HIB-1B and 3T3-L1 cells, respectively, and their ganciclovir sensitivities were tested during in vitro differentiation of cells. As expected more than 80% of cells were dead by the 7th day of treatment with ganciclovir while negative control cells were not affected at all. The data suqqest that the constructed vectors are suitable for obtaining novel obese transqenic models based on a conditional genetic tissue ablation method.

  • PDF

Actin Dysfunction Induces Cell Cycle Delay at G2/M with Sustained ERK and RSK Activation in IMR-90 Normal Human Fibroblasts

  • Shrestha, Deepmala;Choi, Daeun;Song, Kiwon
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.436-443
    • /
    • 2018
  • The actin cytoskeleton plays a key role in the entry of mitosis as well as in cytokinesis. In a previous study, we showed that actin disruption delays mitotic entry at G2/M by sustained activation of extracellular signal-related kinase 1/2 (ERK1/2) in primary cells but not in transformed cancer cell lines. Here, we examined the mechanism of cell cycle delay at G2/M by actin dysfunction in IMR-90 normal human fibroblasts. We observed that de-polymerization of actin with cytochalasin D (CD) constitutively activated ribosomal S6 kinase (RSK) and induced inhibitory phosphorylation of Cdc2 (Tyr 15) in IMR-90 cells. In the presence of an actin defect in IMR-90 cells, activating phosphorylation of Wee1 kinase (Ser 642) and inhibitory phosphorylation of Cdc25C (Ser 216) was also maintained. However, when kinase-dead RSK (DN-RSK) was overexpressed, we observed sustained activation of ERK1/2, but no delay in the G2/M transition, demonstrating that RSK functions downstream of ERK in cell cycle delay by actin dysfunction. In DN-RSK overexpressing IMR-90 cells treated with CD, phosphorylation of Cdc25C (Ser 216) was blocked and phosphorylation of Cdc2 (Tyr 15) was decreased, but the phosphorylation of Wee1 (Ser 642) was maintained, demonstrating that RSK directly controls phosphorylation of Cdc25C (Ser 216), but not the activity of Wee1. These results strongly suggest that actin dysfunction in primary cells activates ERK1/2 to inhibit Cdc2, delaying the cell cycle at G2/M by activating downstream RSK, which phosphorylates and blocks Cdc25C, and by directly activating Wee1.