DOI QR코드

DOI QR Code

Nanotextured Si Solar Cells on Microtextured Pyramidal Surfaces by Silver-assisted Chemical Etching Process

  • Parida, Bhaskar (Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University) ;
  • Choi, Jaeho (Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University) ;
  • Palei, Srikanta (Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University) ;
  • Kim, Keunjoo (Department of Mechanical Engineering and Research Center of Industrial Technology, Chonbuk National University) ;
  • Kwak, Seung Jong (Division of R&D, Withlight Co., Ltd.)
  • Received : 2015.07.22
  • Accepted : 2015.08.05
  • Published : 2015.08.25

Abstract

We investigated nanotextured Si solar cells using the silver-assisted chemical etching process. The nanotexturing process is very sensitive to the concentration of chemical etching solution. The high concentration process results in a nanowire formation for the nanosurfaces and causes severe surface damage to the top region of the micropyramids. These nanowires show excellent light absorption in photoreflectance spectra and radiative light emission in photoluminescence spectra. However, the low concentration process forms a nano-roughened surface and provides high minority carrier lifetimes. The nano-roughened surfaces of the samples show the improved electrical cell properties of quantum efficiency, conversion efficiency, and cell fill factor due to the reduction in the formation of the over-doped dead layer.

Keywords

References

  1. M. A. Green and M. J. Keevers, Prog. Photovolt: Res. Appl., 3, 189 (1995). [DOI: http://dx.doi.org/10.1002/pip.4670030303]
  2. H. Y. Ji, J. Choi, G. Lim, B. Parida, K. Kim, J. H. Jo, and H. S. Kim, J. Nanosci. Nanotechnol. 13, 7806 (2013). [DOI: http://dx.doi.org/10.1166/jnn.2013.8119]
  3. B Parida, J. Choi, G. Lim, and K. Kim, J. Nanomater. 2013 953790 (2013). [DOI: http://dx.doi.org/10.1155/2013/953790]
  4. J.Choi, B. Parida, H. Y. Ji, S. Park, and K. Kim, J. Nanosci. Nanotechnol. 12 5552 (2012). [DOI:http://dx.doi.org/10.1166/jnn.2012.6400]
  5. H. Jansen, M. de. Boer, R. Legtenberg, and M. Elwenspoek, J. Micromech. Microeng. 5 115 (1995). [DOI: http://dx.doi.org/10.1088/0960-1317/5/2/015]
  6. I. J. Lee, U. Paik, and J. G. Park, Sol. Energy, 91 256 (2013). [DOI: http://dx.doi.org/10.1016/j.solener.2013.02.010]
  7. K. Peng, A. Lu, R. Zhang and S. T. Lee, Adv. Funct. Mater. 18 3026 (2008). [DOI: http://dx.doi.org/10.1002/adfm.200800371]
  8. S. Chattopadhyay, Y. F. Huang, Y. J Jen, A. Ganguly, K. H. Chen, and L. C. Chen, Mater. Sci. Eng. R-Rep. 69 1(2010). [DOI: http://dx.doi.org/10.1016/j.mser.2010.04.001]
  9. P. Panek, M. Lipinski, and H. Czternastek, Opto-Electr. Rev. 8 57 (2000).
  10. C. I. Yeo, J. B. Kim, Y. M. Song, and Y. T. Lee, Nanoscale Res. Lett. 8 159(2013). [DOI: http://dx.doi.org/10.1186/1556-276x-8-159]
  11. P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, and M. Peneva, Thin Solid Films 297 299 (1997). [DOI: http://dx.doi.org/10.1016/s0040-6090 (96)09413-8]
  12. Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, Sol. Energy 85 1574(2011). [DOI: http://dx.doi.org/10.1016/j.solener.2011.03.012]
  13. D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain and V. Kumar, Sol. Energ. Mat. Sol. Cells 95 215(2011). [DOI: http://dx.doi.org/10.1016/j.solmat.2010.04.024]
  14. M. Y. Shen, C. H. Crouch, J. E. Carey, and E. Mazur, Appl. Phys. Lett. 85 5694 (2004). [DOI: http://dx.doi.org/10.1063/1.1828575]
  15. B. Parida, J. Choi, G Lim, S. Park and K. Kim, J. Nanosci. Nanotechno-l. 14 9224 (2014). [DOI: http://dx.doi.org/10.1166/jnn.2014.10129]
  16. Y. T. Lu and A. R. Barron, Phys. Chem. Chem. Phys. 15 9862(2013). [DOI: http://dx.doi.org/10.1039/c3cp51835c]
  17. J Oh, H. C. Yuan and H. M. Branz, Nature Nanotech. 7 743(2012). [DOI: http://dx.doi.org/10.1038/nnano.2012.166]
  18. R. L. Smith and S. D. Collins, J. Appl. Phys. 71 R1-R22 (1992). [DOI: http://dx.doi.org/10.1063/1.350839]
  19. C. Y. Chen, L. LI, and C. P. Wong, Chem. Asian J. 9 93 (2014). [DOI: http://dx.doi.org/10.1002/asia.201400031]
  20. K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang and S.T. Lee, Appl. Phys. Lett. 90, 163123(2007).[DOI: http://dx.doi.org/10.1063/1.2724897]
  21. F. Karbassian, B. Kheyraddini Mousavi, S. Rajabali, R. Talei, S. Mohajerzadeh, and E. Asl-Soleimani, J. Electron. Mater., 43, 1271 (2014). [DOI: http://dx.doi.org/10.1007/s11664-014-3051-3]
  22. P. Deak, M. Rosenbauer, M. Stutzmann, J. Weber, and M. S. Brandt, Phys. Rev. Lett., 69, 2531 (1992). [DOI: http://dx.doi.org/10.1103/physrevlett.69.2531]
  23. A. G. Cullis, L. T. Canham, and P.D.J. Calcott, J. Appl. Phys., 82, 909 (1997). [DOI: http://dx.doi.org/10.1063/1.366536]
  24. C. Chartier, S. Bastide, and C. Levy-Clement, Electrochem. Acta, 53, 5509 (2008). [DOI: http://dx.doi.org/10.1016/j.electacta.2008.03.009]
  25. X. Li and P. W. Bohn, Appl. Phys. Lett., 77, 2572(2000). [DOI: http://dx.doi.org/10.1063/1.1319191]
  26. D. E. Aspnes, J. B. Theeten, and F. Hottier, Phys. Rev. B, 20, 3292 (1979). [DOI: http://dx.doi.org/10.1103/physrevb.20.3292]
  27. O. Bisi, S. Ossicini, and L. Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronics Surf. Sci. Rep., 38, 1(2000). [DOI: http://dx.doi.org/10.1016/s0167-5729(99)00012-6]
  28. C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu,J. Chu, and S. Wang, J. Appl. Phys., 108, 094318 (2010). [DOI: http://dx.doi.org/10.1063/1.3493733]
  29. D. Z. Dimitrov and C. H. Du, Appl. Surf. Sci., 266, 1 (2013). [DOI : http://dx.doi.org/10.1016/j.apsusc.2012.10.081]
  30. H. Y. Chen, G. D. Yuan, Y. Peng, M. Hong, Y. B. Zhang, Y. Zhang, Z. Q. Liu, X. Wang, B. Cai, Y. M. Zhu, and J. M. Li, Appl. Phys. Lett., 104, 193904(2014). [DOI: http://dx.doi.org/10.1063/1.4878096]
  31. M. A. Tischler, R. T. Collins, J. H. Stathis, and J. Tsang, Appl. Phys. Lett., 60, 639 (1992). [DOI: http://dx.doi.org/10.1063/1.106578]
  32. K. A. Salman, Z. Hassan, and K. Omar, Int. J. Electrochem. Sci., 7, 376 (2012).
  33. F. Toor, H. M. Branz, M. R. Page, K. M. Jones, and H. C. Yuan, Appl. Phys. Lett., 99, 103501 (2011). [DOI: http://dx.doi.org/10.1063/1.3636105]
  34. D. Zhang, R. Jia, C. Chen, W. Ding, Z. Jin, X. Liu, and T. Ye, Chem. Phys. Lett., 601, 69 (2014). [DOI: http://dx.doi.org/10.1016/j.cplett.2014.03.092]
  35. H. C. Yuan, V. E. Yost, M. R. Page, P. Stardins, D. L. Meier and H. M. Branz, Appl. Phys. Lett., 95, 123501 (2009). [DOI: http://dx.doi.org/10.1063/1.3231438]
  36. V. V. Iyengar, B. K. Nayak. K. L. More, H. M. Meyer, M. D. Biegalski, J. V. Li, and M. C. Gupta, Sol. Energ. Mat. Sol. Cells, 95, 2745 (2011). [DOI: http://dx.doi.org/10.1016/j.solmat.2011.04.011]
  37. M. Hong, G. D. Yuan, Y. Peng, H. Y. Chen, Y. Zhang, Z. Q. Z. Q. Liu, J. X. Wang, B. Cai, Y. M. Zhu, Y. Chen, J. H. Liu, and J. M. Li, Appl. Phys. Lett., 104, 253902 (2014). [DOI: http://dx.doi.org/10.1063/1.4884899]
  38. Z. Zuo, K. Zhu, G. Cui, W. Huang, J. Qu, Y. Shi, Y. Liu, and G. Ji, Sol. Energ. Mat. Sol. Cells, 125, 248 (2014). [DOI: http://dx.doi.org/10.1016/j.solmat.2014.03.026]

Cited by

  1. Oxidation behavior with quantum dots formation from amorphous GaAs thin films vol.98, pp.33, 2018, https://doi.org/10.1080/14786435.2018.1512761