• Title/Summary/Keyword: Dc/Dc converter

Search Result 3,434, Processing Time 0.038 seconds

THE NEW THICK-FILM HYBRID CONVERTERS FOR HALOGEN AND FLUORESCENT LAMPS

  • Gondek, J.;Dzialek, K.;Kocol, J.;Kawa, B.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.04a
    • /
    • pp.57-65
    • /
    • 2001
  • Economical consumption of energy, longer life of lamps, higher lighting comfort and new aesthetic of illumination is subject of numerous research and development works. The halogen lamps are an example of positive solution some of above mentioned problems. The electronic transformers are more frequent used for their supply. In comparison with conventional transformers they have less weight, less volume and 60% less power tosses. Their advantages are particular visible, when the hybrid technique is applied. The paper presents the results of engineering research and development works carried out ill Private Institute of Electronic Engineering, in R. & D. Center for Hybrid Microelectronics and Resistors and in Technical School of Communications in Krakow, in the field of the design and exploitation tests of hybrid converters 220V AC /12V DC (electronic transformers) and electronic ballasts destined for the supply of halogen lamps 20W to 150W and fluorescent lamps respectively. To perform the converters, thick film technology and surface mount technology were used. For the protection of converter electronic circuit the thick film temperature sensor and transistors were applied. Moreover the paper presents the base application circuits of elaborated converters, their technical parameters and exploitation results. The development perspectives of hybrid domain of hybrid circuits are also discussed.

  • PDF

A Novel Control Scheme for T-Type Three-Level SSG Converters Using Adaptive PR Controller with a Variable Frequency Resonant PLL

  • Lin, Zhenjun;Huang, Shenghua;Wan, Shanming
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1176-1189
    • /
    • 2016
  • In this paper, a novel quasi-direct power control (Q-DPC) scheme based on a resonant frequency adaptive proportional-resonant (PR) current controller with a variable frequency resonant phase locked loop (RPLL) is proposed, which can achieve a fast power response with a unity power factor. It can also adapt to variations of the generator frequency in T-type Three-level shaft synchronous generator (SSG) converters. The PR controller under the static α-β frame is designed to track ac signals and to avert the strong cross coupling under the rotating d-q frame. The fundamental frequency can be precisely acquired by a RPLL from the generator terminal voltage which is distorted by harmonics. Thus, the resonant frequency of the PR controller can be confirmed exactly with optimized performance. Based on an instantaneous power balance, the load power feed-forward is added to the power command to improve the anti-disturbance performance of the dc-link. Simulations based on MATLAB/Simulink and experimental results obtained from a 75kW prototype validate the correctness and effectiveness of the proposed control scheme.

Classification and Compensation of DC Offset Error and Scale Error in Resolver Signals

  • Lee, Won;Moon, Jong-Joo;Im, Won-Sang;Park, June-Ho;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1190-1199
    • /
    • 2016
  • This study proposes a classification and compensation algorithm of two non-ideal output signals of a resolver to reduce position errors. Practically, a resolver generates position errors because of amplitude imbalance and quadrature imperfection between the two output signals of the resolver. In this study, a digital signal processor system based on a resolver-to-digital converter is used to reconstruct the two output signals of the resolver. The two output signals, "sin" and "cos," can be represented by a unit circle on the xy-plot. The classification and compensation of the errors can be obtained by using the radius and area of the circle made by the resolver signals. The method computes the integration of the areas made by the two resolver output signals to classify and compensate the error. This system cannot be applied during transient response given that the area integration during the transient state causes an error in the proposed method. The proposed method does not need any additional hardware. The experimental results verify the effectiveness of the proposed algorithm.

LED Driver Compatible with Both Electronic and Magnetic Ballasts (전자식 및 자기식 안정기 동시 호환 가능한 LED 구동회로)

  • Gu, Hyun-Su;Choi, Yoon;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.42-48
    • /
    • 2016
  • Light-emitting diode (LED) drivers are recently replacing fluorescent lamps; these drivers can operate adaptively with various ballasts without modifying and removing such ballasts. To satisfy these trends, a LED driver that is compatible with both electronic and magnetic ballasts is proposed in this study. Unlike conventional LED drivers, the proposed driver has a ballast recognition circuit and a mode selection circuit to operate ballasts at optimal conditions. Therefore, it features low voltage stress, high efficiency, and good compatibility with both electronic and magnetic ballasts. Moreover, it can be compatible with a wide selection of ballasts from various manufacturers. To confirm the validity of the proposed LED driver, results of the theoretical analysis and experimental verification performed on a 15 W-rated prototype are presented.

Research into The Future Development of the Hybrid System for Buoy

  • Lee, Ji-Young;Kim, Jong-Do;Lee, Jong-Ho;Lee, Jin-Yeol;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.583-591
    • /
    • 2007
  • This paper reports the performance of a 150W PV-wave hybrid system with battery storage in buoy. This system was originally designed to meet a new hybrid ower system for buoy in Korea. In the case or lighted buoys and lighthouses, a light failure alarm system of wireless radio is attached so that light failures are immediately notified to the office. At lighthouse offshore fixed lights and light buoys where commercial electricity is not available, the power source depends on solar system and batteries. This power system has a various problems. Therefore energy derived from the sunshine, wind and waves has been used as the energy source lot aids to navigation. Recently a hybrid system of combining the solar, wind and the wave generator is a favorable system lot the ocean facilities like lighthouse and buoy. The hybrid system in this paper is intended for variable DC load like light, communication system in the buoy and includes a PV-wane generation system and battery. This is composed a high efficiency charging algorithm, switching converter and controller. This paper includes discussion on system reliability, power quality, and effects of hybrid system in the buoy. Simulation and experimental results show excellent performance.

Implementation of Vector Control system for $3\phi$ Induction Motor (3상 유도 전동기 벡터제어 구동시스템의 구현)

  • 홍순일
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.45-50
    • /
    • 1998
  • In recent year, inverters and cycloconverters system are widely used for fed induction motor drives. Motor drives by cycloconverter is possible to frequency have been directly changed without AC/DC converter, so that circuits is simpler than inverter. A aims of this paper is the control strategy and hardware design for vector control system by cycloconverter fed induction motor drives. In this paper, Algorithm of vector control is derivlid from the model of controlled current source-fed induction motor. Vector control system is implemented using these algorithm and a pulse width controled cycloconverter using a SCR. Cycloconverter of vector control system is controlled by pulse width of SCR's trigger signal. pulse width is controlled primary command current $li_1l$ and frequency TEX>$\omega_1$..

  • PDF

SRM Drive System Using 6-switch IGBT Module (6-Switch IGBT Module을 이용한 SRM 구동 시스템)

  • Kim Yuen-Chung;Yoon Yong-Ho;Lee Won Cheol;Lee Byoung-Kuk;Won Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.569-577
    • /
    • 2005
  • In this paper, a new control scheme to use 6-switch IGBI module for 3-phase switched reluctance motors(SRM) is proposed. Compared with the conventional asymmetric bridge converter topology, it can minimize the entire system size and cost. Therefore, it may have a new topology lot SRM to compare the other ac motors, such as induction motors, brushless dc motors, and so on. The validity of the proposed method is verified by simulation, and experimental results.

Maximum Power Point Tracking Controller Connecting PV System to Grid

  • Ahmed G. Abo-Khalil;Lee Dong-Choon;Choi Jong-Woo;Kim Heung-Geun
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.226-234
    • /
    • 2006
  • Photovoltaic (PV) generators have nonlinear V-I characteristics and maximum power points which vary with illumination level and temperature. Using a maximum power point tracker (MPPT) with an intermediate converter can increase the system efficiency by matching the PV systems to the load. This paper presents a maximum power point tracker based on fuzzy logic and a control scheme for a single-phase inverter connected to the utility grid. The fuzzy logic controller (FLC) provides an adaptive nature for system performance. Also the FLC provides excellent features such as fast response, good performance and the ability to change the fuzzy parameters to improve the control system. A single-phase AC-DC inverter is used to connect the PV system to the grid utility and local loads. While a control scheme is implemented to inject the PV output power to the utility grid at unity power factor and reduced harmonic level. The simulation results have shown the effectiveness of the proposed scheme.

Experimental Assessment with Wind Turbine Emulator of Variable-Speed Wind Power Generation System using Boost Chopper Circuit of Permanent Magnet Synchronous Generator

  • Tammaruckwattana, Sirichai;Ohyama, Kazuhiro;Yue, Chenxin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.246-255
    • /
    • 2015
  • This paper presents experimental results and its assessment of a variable-speed wind power generation system (VSWPGS) using permanent magnet synchronous generator (PMSG) and boost chopper circuit (BCC). Experimental results are obtained by a test bench with a wind turbine emulator (WTE). WTE reproduces the behaviors of a windmill by using servo motor drives. The mechanical torque references to drive the servo motor are calculated from the windmill wing profile, wind velocity, and windmill rotational speed. VSWPGS using PMSG and BCC has three speed control modes for the level of wind velocity to control the rotational speed of the wind turbine. The control mode for low wind velocity regulates an armature current of generator with BCC. The control mode for middle wind velocity regulates a DC link voltage with a vector-controlled inverter. The control mode for high wind velocity regulates a pitch angle of the wind turbine with a pitch angle control system. The hybrid of three control modes extends the variable-speed range. BCC simplifies the maintenance of VSWPGS while improving reliability. In addition, VSWPGS using PMSG and BCC saves cost compared with VSWPGS using a PWM converter.

Current Sensorless MPPT Control Method for Dual-Mode PV Module-Type Interleaved Flyback Inverters

  • Lee, June-Hee;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.54-64
    • /
    • 2015
  • This paper presents a current sensorless maximum power point tracking (MPPT) control method for dual-mode photovoltaic (PV) module-type interleaved flyback inverters (ILFIs). This system, called the MIC (Module Integrated Converter), has been recently studied in small PV power generation systems. Because the MIC is an inverter connected to one or two PV arrays, the power system is not affected by problems with other inverters. However, since the each PV array requires an inverter, there is a disadvantage that the initial installation cost is increased. To overcome this disadvantage, this paper uses a flyback inverter topology. A flyback inverter topology has an advantage in terms of cost because it uses fewer parts than the other transformer inverter topologies. The MPPT control method is essential in PV power generation systems. For the MPPT control method, expensive dc voltage and current sensors are used in the MIC system. In this paper, a MPPT control method without current sensor where the input current is calculated by a simple equation is proposed. This paper also deals with dual-mode control. Simulations and experiments are carried out to verify the performance and effectiveness of the proposed current sensorless MPPT control method on a 110 [W] prototype.