• Title/Summary/Keyword: Davisson Method

Search Result 20, Processing Time 0.02 seconds

Analytical Study on the Appropriateness of Design Formula and Possibility of Improving Bearing Capacity of Bored Pile (매입말뚝의 설계식 적정성 및 지지력 상향 가능성 분석 연구)

  • Park, Jong-Bae;Lee, Bum-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.6 no.3
    • /
    • pp.139-145
    • /
    • 2015
  • To improve the pile design efficiency(design bearing capacity/the strength of materials) from 70 percent(160tonf) to 80 percent(190tonf), this paper analysed the existing pile loading test data and performed the precise dynamic loading test and Bi-directional loading test for the first time in Korea. Analysis result of the existing dynamic loading test data by Davisson method showed that bearing capacity of piles penetrated at weathered rock stratum(N=50/15) exceeded 190tonf. But the analysis result by CAPWAP method showed that piles less than the target bearing capacity were 40% due to the lack of impact energy. To get the target bearing capacity from the dynamic loading test, using the hammer over 6tonf to trigger the enough impact energy is necessary. Allowable bearing capacty of Bi-directional static loading test by Davisson method was 260.0~335tonf(ave. 285.3tonf) and exceeded overwhelmingly the target capacity. And this exceeded the bearing capacity of precise dynamic loading test(ave. 202.3tonf) performed on the same piles over 40%. The difference between the capacity of Bi-directional loading test and dynamic loading test was caused by the insufficient impact energy during dynamic loading test and increase by interlocking effect by near piles during Bi-directional static loading test.

The Behavior of Bearing Capacity for the Precast files (기성말뚝의 지지거동)

  • 박영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.107-116
    • /
    • 2000
  • Dynamic and static load tests are conducted in four construction sites by using steel pipe piles(SPP) and concrete piles to compare differences of load bearing mechanism. Steel pipe piles are instrumented with electric strain gages and are subject to dynamic load tests during driving. The damage of strain gages attached is checked simultaneously. Static load test is also conducted on the same piles after two to seven days' elapse. Then load-settlement behavior and shaft and/or tip resistances are measured. As a result, the allowable bearing capacity calculated by the Davisson's offset method of CAPWAP analysis shows 2~33% larger than that of static load test. The average value of allowable bearing capacity of static load test is closer to the allowable capacity obtained at the safety factor of 2.5 applied on ultimate bearing capacity than to the one obtained from the Davisson's offset method. The analysis of strain gage readings shows that unit skin friction increases with depth. Furthermore, the friction mobilized around the 1~2m above the pile tip considerably contributes to the total shaft resistance.

  • PDF

Changes in Ultimate Bearing Capacity according to the Position of the End of the Drilled Shaft (현장타설말뚝 선단부의 위치에 따른 극한지지력 변화)

  • Choi, Dong-Lo;Park, Kyeong-Ho;Kim, Chae-Min;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.49-59
    • /
    • 2022
  • This study was conducted to find out the rational and appropriate design of drilled shaft. In other words, in order to find out the variation of ultimate bearing capacity according to the change in the support layer of drilled shaft, back analysis was performed using the bi-directional pile load test performed on drilled shaft. Based on the back-analyzed data, numerical analysis of the pile head load was performed, and the ultimate bearing capacity in the target ground was evaluated using the Davisson method. As a result of numerical analysis of one case where the end of the pile was seated on the top of the weathered rock layer, and three cases where the end of the pile was embedded at different locations in the weathered soil, it was found that sufficient ultimate bearing capacity was secured in all cases. In other words, the case where the end of the pile is seated on the top of the weathered rock layer, not embedded the weathered rock, and the drilled shaft embedded into the weathered soil also have sufficient bearing capacity, so it can be used as a support layer for drilled shaft.

Analysis on Behavior of Vertically Loaded Single Pile included in Pile Group (무리말뚝을 구성하는 외말뚝의 연직방향 하중지지 거동분석)

  • Lee, Seung-Hyun;Kim, Byoung-Il;Yoo, Wan-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4863-4868
    • /
    • 2012
  • Static pile load tests were conducted on the two piles which comprised group pile installed in sand and the test results were compared with those obtained from load transfer method. Predicted load bearing capacity of the pile which locates center portion of the group pile was less than that from the load test and the reason is thought to be the densification of the soil due to the installation of the group pile. Predicted pile capacity of the API method, Coyle and Sulaiman method were 77%, 90% of the bearing capacity obtained from the load test, respectively. Comparing ultimate bearing capacities of the pile locating at the edge of the group pile, those predicted by the API method, Coyle and Sulaiman method were 1.1 times, 1.3 times of the bearing capacity obtained from the pile load test, respectively.

Advancement in Design Criteria of Helical Pile (헬리컬 파일 설계식 고도화 연구)

  • Park, Jong-Bae;Park, Yong-Boo;Kwon, Young-Hwan
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.87-96
    • /
    • 2021
  • Korea has begun to use the Helical pile prevalent in Europe. Korea hasn't still set up the standard design criteria on Helical pile due to the lack of relevant researches. In this regard, this study carried out static and dynamic load tests on Helical pile and then performed reliability analysis including the previous research data. The results present that Road bridge design standard design criteia for pre-boring pile with regard to Modified Davisson method showed good reliability and consistency because Resistance bias factor of this design criteria approached '1.0' and Design C.O.V. showed 'low' level.

An Estimation of Bearing Capacity and Driveability of Steel Sheet Pile Installed by Vibratory Hammer (진동해머에 의해 설치되는 강널말뚝의 지지력 및 항타관입성 평가)

  • Lee, Seung-Hyun;Yune, Chan-Young;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.339-347
    • /
    • 2007
  • Penetration tests were performed for two types of steel sheet piles which were driven in clay deposit and sand deposit. Penetration velocity data acquired from penetration tests were used in order to estimate bearing capacity and vibro-driveability of steel sheet piles. Bearing capacity values predicted from Davisson method and Bombard method were greater than that calculated from static bearing capacity formula by 11.9 times and 1.6 times respectively. Vibro-driveability predictions from $T\ddot{u}nkers$ method and ${\beta}$ method show correspondence to field test result fur sand deposit but not for clay deposit. From motor powers estimated by Savinov and Luskin method it can be seen that larger capacities of motor powers are required for clay deposit and adequate hammer was used for sand deposit.

  • PDF

Evaluation of the Resistance Bias Factors to Develop LRFD for Driven Steel Pipe Piles (LRFD 설계를 위한 항타강관말뚝의 저항편향계수 산정)

  • Kwak, Kiseok;Park, Jaehyun;Choi, Yongkyu;Huh, Jungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.343-350
    • /
    • 2006
  • The resistance bias factors for driven steel pipe piles are evaluated as a part of study to develop the LRFD(Load and Resistance Factor Design) for foundation structures in Korea. The 43 data sets of static load tests and soil property tests performed in the whole domestic area were collected and analyzed to determine the representative bearing capacities of the piles using various methods. Based on the statistical analysis of the data, the Davisson's criterion is proved to be the most reasonable method for estimation of pile bearing capacity among the methods used. The static bearing capacity formulas and the Meyerhof method using N values are applied to calculate the design bearing capacity of the piles. The resistance bias factors of the driven steel pipe piles are evaluated respectively as 0.98 and 1.46 by comparison of the bearing capacities for both of the static bearing capacity formulas and the Meyerhof method. It is also shown that uncertainty of the static bearing capacity formulas is relatively less than that of the Meyerhof method.

Relations of Safety Factor and Reliability for Pile Load Capacity (말뚝 기초지지력에 대한 안전율과 신뢰도지수 평가)

  • Kim, Dae-Ho;Kim, Min-Ki;Hwang, Sung-Uk;Park, Young-Hwan;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.65-73
    • /
    • 2006
  • Reliability between safety factor and reliability index for driven and bored pile load capacity was analyzed in this study. 0.1B, Chin, De Beer, and Davisson's methods were used for determining pile load capacity by using load-settlement curve from pile load test. Each method defines ultimate yield and allowable pile load capacities. LCPC method using CPT results was performed for comparing results of pile load test. Based on FOSM analysis using load factors, it is obtained that reliability indices for ultimate pile load capacity were higher than those of yield and allowable condition. Present safety factor 2 for yield and allowable load capacities is not enough to satisfy target reliability index $2.0{\sim}2.5$. However, it is sufficient for ultimate pile load capacity using safety factor 3.

A Study on the Bearing Capacitiy behavior of Large-diameter Drilled Shafts According to Various Ground Conditions under Pile Tip through Numerical Analysis Results (수치해석 결과 분석을 통한 다양한 말뚝 선단하부의 지반조건에 따른 대구경현장타설말뚝의 지지력 거동에 관한 연구)

  • Kim, Chae Min;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.7-22
    • /
    • 2021
  • In this study, inverse analysis was performed on the bi-directional axial compressive load test conducted on drilled shafts. And the bearing capacities were analyzed by numerical analysis of various pile tip ground conditions of silt clay, silt sand, sand silt, sand gravel, weathered rock, and soft rock. The bearing capacities were analyzed using the P-S method, the Davisson method, and the allowable sttlement of 25.4 mm. The minimum allowable bearing capacities analyzed by three methods were found to be 19.64 MN ~ 24.96 MN. At this time, the base resistances were sharing a 2% ~ 12% of a head load, shaft resistance were shared 88% ~ 98% of the head load. The greater the strength of pile tip was found to increase the allowable bearing capacity. However, the difference between the maximum allowable bearing capacity and the minimum allowable bearing capacity was 5.32 MN, and the increase in the allowable bearing capacity was only 27% depending on the pile tip.

Analysis of Bearing Capacity and Safety Factor of Dynamic Load Test of Prebored and Precast Steel Pile (현장재하시험을 통한 강관 매입말뚝의 지지력 안전율 제안)

  • Park, Jong-Jeon;Jeong, Sang-Seom;Park, Jeong-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.5
    • /
    • pp.5-17
    • /
    • 2018
  • In this study, the static and dynamic load tests were carried out to propose the safety factor of steel prebored and precast piles in weathered rocks. The axial load tests have been conducted on test piles with nominal diameters of 0.508 and 0.457 m. The piles were subject to static loading tests (14 times) and dynamic loading tests (EOID 14times, Restrike 14times). The dynamic loading tests were first executed after the casting of test piles ((1) initial EOID test). (2)In the succeding 28 days from completion of construction, static load tests were performed and (3)final restrike tests were carried out after 15 days from the static test. As a result, the bearing capacity based on Davisson method was 15% higher than that of the restrike tests. The bearing capacity of the static load tests were larger than that of the dynamic tests. By comparing the safety factor through various loading tests, the safety factor of dynamic loading tests were suggested to be lowered to 1.75 from the conventional 2.0.