• Title/Summary/Keyword: Daughter nuclide

Search Result 8, Processing Time 0.02 seconds

An innovative method for determining the diffusion coefficient of product nuclide

  • Chen, Chih-Lung;Wang, Tsing-Hai
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1019-1030
    • /
    • 2017
  • Diffusion is a crucial mechanism that regulates the migration of radioactive nuclides. In this study, an innovative numerical method was developed to simultaneously calculate the diffusion coefficient of both parent and, afterward, series daughter nuclides in a sequentially reactive through-diffusion model. Two constructed scenarios, a serial reaction (RN_1 ${\rightarrow}$ RN_2 ${\rightarrow}$ RN_3) and a parallel reaction (RN_1 ${\rightarrow}$ RN_2A + RN_2B), were proposed and calculated for verification. First, the accuracy of the proposed three-member reaction equations was validated using several default numerical experiments. Second, by applying the validated numerical experimental concentration variation data, the as-determined diffusion coefficient of the product nuclide was observed to be identical to the default data. The results demonstrate the validity of the proposed method. The significance of the proposed numerical method will be particularly powerful in determining the diffusion coefficients of systems with extremely thin specimens, long periods of diffusion time, and parent nuclides with fast decay constants.

The Measurement of Airborne Radon Daughter Concentrations in the Atmosphere (대기중(大氣中) 라돈 붕괴생성물(崩壞生成物)의 공기중(空氣中) 방사능(放射能) 농도(濃度)의 측정(測定))

  • Ha, Chung-Woo;Lee, Jai-Ki;Moon, Philip S.;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.4 no.1
    • /
    • pp.5-13
    • /
    • 1979
  • A simple method for determining the airborne concentration of radon daughter products has been developed, which is based on gross alpha counting of the air filter collections at several time intervals after completion of air sampling. The concentration of each nuclide is then obtained from an equation involving the alpha disintegrations, the sampling time, and the known numerical coefficients. The state of radioactive disequilibrium is also investigated. The atmosphere sampled in the TRIGA Mark-III reactor room was largely in disequilibrium. The extent of radioactive disequilibrium between radon daughter products seems likely depend on sampling times associated with turbulence conditions. The data obtained here will certainly provide useful information on the evaluation of internal exposure and calibration of effluent monitoring instruments.

  • PDF

The Vertical Fluxes of Particles and Radionuclides in the East Sea

  • Moon, Deok-Soo;Kim, Kee-Hyun;Noh, Il
    • Journal of the korean society of oceanography
    • /
    • v.35 no.1
    • /
    • pp.16-33
    • /
    • 2000
  • In order to measure the vertical fluxes of particles and reactive radionuclides such as thorium and polonium isotopes, Dunbar-type sediment traps were freely deployed at the Ulleung Basin and in warm and cold water masses around the polar front of the East Sea. We estimated the ratios of the catched (F) to the predicted $^234$Th fluxes (P) using natural tracers pair $^234$Th-$^238$U. The F/P ratios are decreased with increasing water depth. Whereas the concentrations of suspended particles are homogeneous in water column, the mass fluxes are also decreased with increasing water depth like the F/P ratios. These facts indicate that organic matters of settling particles are destructed within the euphotic layer due to decomposition. Whereas regenerations of sinking particles are negligible in the cold water mass, about 80% of them are regenerated in the warm water mass during falling of large particles. These downward mass fluxes are closely correlated with their primary productions in euphotic zone. The activities of $^234$Th, $^228$Th and $^210$Po in the sinking material were increased with water depth. Because $^234$Th steadily produced in the water column are cumulatively adsorbed on the surface of sinking particles, vertical $^234$Th fluxes were observed to increase with water depth. Therefore, these sinking particles play important roles in transporting the particle reactive elements like thorium from surface to the deep sea. The scavenging processes including adsorption and settling reactions generate radio-disequilibrium between daughter and parent nuclides in water column. The activity ratios of $^234$Th/$^238$U and $^228$Th/$^228$Ra were observed to be < 1.0 in the surface water and approached to be equilibrium below the thermocline. The extent of the deficiency of daughter nuclides compared to the parents nuclide was highly correlated with the vertical particle flux. Because most of the $^210$Po in the surface water are scavenged on a labile phase and are recycled at sub-surface depths (< 200 m), the $^210$Po are always observed to be excess activities compared to $^226$Ra in surface water.

  • PDF

[ $^{99m}Tc$ ] Generator Safety Simulation Based on GEANT4 (GEANT4를 이용한 $^{99m}Tc$ Generator 안전성 시뮬레이션)

  • Kang, Sang-Koo;Han, Dong-Hyun;Kim, Chong-Yeal
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Technisium $(^{99m}Tc)$ is one of the most widely used radioactive isotopes for diagnosis in nuclear medicine. In general, technisium is produced inside the so called $^{99m}Tc$ generator which is usually made out of lead to shield relatively high energy radiation from $^{99}Mo$ and its daughter nuclide $^{99m}Tc$. In this paper, a GEANT4 simulation is carried out to test the safety of the $^{99m}Tc$ generator, taking the Daiichi product with radioactivity of 500 mCi as an example. According to the domestic regulation on radiation safety, the dose at 10 cm and 100 cm away from the surface of shielding container should not exceed 2.0 mSv/h and 0.02 mSv/h, respectively. The simulated dose turned out to be less than the limit, satisfying the domestic regulation.

  • PDF

Analytical Solutions for a Three-Member Decay Chain of Radionuclides Transport in a Single Fractured Porous Rock (단일균열 다공성암반에서 방사성핵종의 수송에 대한 3단계 붕괴사슬의 해석해)

  • Yu, Young-Woo;Chung, Chang-Hyun;Kim, Chang-Lak
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.453-460
    • /
    • 1994
  • The migration equation is modified for a three-member decay chain in the fracture and porous matrix Analytical solutions are obtained by utilizing Laplace transform the initial conditions of Delta function and Bateman equation. The concentrations for each nuclide of Np$^{237}$ -U$^{233}$ -Th$^{229}$ and U$^{234}$ -Th$^{230}$ -Ra$^{226}$ chains selected from the 4n+1 and 4n+2 chains are plotted by utilizing analytical solutions in the fracture. Retardation coefficient of the nuclides are obtained using those of the granite. The results indicate that the daughter nuclides such as U$^{233}$ , Th$^{229}$ , Th$^{230}$ and Ra$^{226}$ become important at the far field from the repository though there is very small initial inventory in the waste solid or spent fuel, for they are produced by the mother nuclides decayed in the fracture and porous matrix.

  • PDF

Preliminary Post-closure Safety Assessment of Disposal Options for Disused Sealed Radioactive Source (폐밀봉선원 처분방식별 폐쇄후 예비안전성평가)

  • Lee, Seunghee;Kim, Juyoul;Kim, Sukhoon
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.301-314
    • /
    • 2016
  • Disused Sealed Radioactive Sources (DSRSs) are stored temporally in the centralized storage facility of Korea Radioactive Waste Agency (KORAD) and planned to be disposed in the low- and intermediate-level radioactive waste (LILW) disposal facility in Gyeongju city. In this study, preliminary post-closure safety assessment was performed for DSRSs in order to draw up an optimum disposal plan. Two types of disposal options were considered, i.e. engineered vault type disposal and rock cavern type disposal which were planned to be constructed and operated respectively in LILW disposal facility in Gyeongju city. Assessment end-point was individual effective dose of critical group and calculated by using GoldSim code. In normal scenario, the maximum dose was estimated to be approximately $1{\times}10^{-7}mSv/yr$ for both disposal options. It meant that both options had sufficient safety margin when compared with regulatory limit (0.1 mSv/yr). Otherwise, in well scenario, the maximum dose exceeded regulatory limit of 1 mSv/yr in engineered vault type disposal and the exposure dose was mainly contributed by $^{226}Ra$, $^{210}Pb$ (daughter nuclide of $^{226}Ra$) and $^{237}Np$ (daughter nuclide of $^{241}Am$). For rock cavern type disposal, even though the peak dose satisfied regulatory limit, the exposure doses by $^{14}C$ and $^{237}Np$ were relatively high above 10% of regulatory limit. Therefore, it is necessary to exclude $^{14}C$, $^{226}Ra$ and $^{241}Am$ for two type of disposal options and additional management such as long-term storage and development of disposal container for those radionuclides should be performed before permanent disposal for conservative safety and security.

Radon concentration measurement at general house in Pusan area (부산지역 일반주택에서의 라돈농도측정)

  • Im, In-Cheol
    • Journal of radiological science and technology
    • /
    • v.27 no.2
    • /
    • pp.29-33
    • /
    • 2004
  • Until early 1980s we have lived without thinking that radon ruins our health. But, scientists knew truth that radon radioactive danger is bedeviling on indoor that we live for a long time. Specially, interest about effect that get in danger and injury for Radon and human body is inactive in our country. Recently, with awareness for Radon contamination, We inform about importance and danger of Radon in some station of the Seoul subway, indoor air of school facilities and We had interest with measure and manages. Usually, Radon gas emitted in base of building enters into indoor through building floor split windage back among radon or indoor air of radon daughter nucleus contamination is increased. Therefore, indoor radon concentration rises as there are a lot of windages between number pipe of top and bottom and base that enter crack from estrangement of the done building floor, underground to indoor. Thus, Radon enters into indoor through architecture resources water as well as, kitchen natural gas for choice etc., but more than about 85% from earth's crust emit. Danger and injury of health by Radon and Radon daughter nucleus that is indicated for cause of lung cancer incerases content of uranium of soil rises specially from inside pit of High area and a mine, cave, hermetical space with house. Safe sub-officer of radon concentration can not know and danger always exists large or small during. So, Important thing reduces danger of lung cancer by lowering concentration of Radon within house and building. Therefore, is thought that need general house Radon concentration measurement, measured Radon concentration monthly using Sintillator radon monitor. Study finding appeared high all underground market 1 year than the ground, and the winter appeared high than the summer. Specially, month that pass over 4pCi in house that United States Environmental Protection Agency advises appeared in underground, and appeared and know Radon exposure gravity by 4 months during 12 months. Therefore, Thinking that establishment and regulation of norm and preparation of reduction countermeasure about Radon are pressing feels, and inform result that measure Radon concentration.

  • PDF

Evaluation of 226Ra analysis methods using a gamma-ray spectrometer and a liquid scintillation counter (감마선분광분석기와 액체섬광계수기를 이용한 226Ra 분석법 비교 연구)

  • Ju, Byoung Kyu;Kim, Moon Su;Kim, Hyun Koo;Kim, Dong Su;Cho, Sung Jin;Yang, Jae Ha;Park, Sun Hwa;Kim, Hyoung Seop;Kwon, Oh Sang;Kim, Tae Seung
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.228-235
    • /
    • 2015
  • The efficiency and applicability of the solid phase extraction disk method in a 226Ra analysis were examined by the gamma ray spectrometer (GRS) method using a Marinelli beaker and the liquid scintillation counter (LSC) method for groundwater. The recovered 226Ra, which was filtered by the solid phase extraction disk, was analyzed using gamma ray spectrometer The disks, which were pretreated for caulking the daughter nuclide, were sealed with polyethylene film. Distilled water was used for the blank value of the 226Ra activity. The recovery values of 214Bi and 214Pb in the solid phase extraction disk, which used 226Ra standard material, were 80% (295.21 Kev) and 104% (351.92 Kev), respectively, which were higher than 75% determined by the LSC. The injection of nitrogen gas into the measuring chamber reduced the interference values by about 10%. The detection limits of the 226Ra activity in a blank sample of 5 L were 0.17~0.40 pCi/L after 80,000 seconds of measuring time. The relationship of the 226Ra activity in the solid phase extraction disk method and in the LSC method in seven groundwater samples showed a correlation coefficient value 0.987, which implies the applicability of the solid phase extraction disk method. The results showed that 226Ra activity in groundwater using the solid phase extraction disk method has the following benefits: simple pretreatment, time saving, high recovery values, a low detection limit, and so on. Compared with the LSC method and the GRS method using the Marinelli beaker for the 226Ra analysis, the solid phase extraction disk method could be useful in groundwater samples with low levels of activities of radionuclides because the method is not restricted by the volume of the sample.