• 제목/요약/키워드: Database for Popular Music

검색결과 4건 처리시간 0.018초

교육적 콘텐츠로의 한국 대중가요의 활용과 필요 (Application and Need of Korean Popular songs as the Educational Contents)

  • 정지영
    • 한국콘텐츠학회논문지
    • /
    • 제12권4호
    • /
    • pp.174-185
    • /
    • 2012
  • 한국의 대중가요는 문화적 그리고 사회적 영향력이 점점 커지고 있으며 산업적 규모도 다른 예술적 장르보다 비중이 높다. 또한 대학 등과 같은 교육기관의 전공신설과 대학원 과정에서의 실용음악 분야가 크게 증가하면서 대중가요는 사회문화적 경향뿐만 아니라 교육적 그리고 학술적 연구대상으로의 가치를 가진다고 할 수 있다. 그러므로 전통적 측면의 음악분야에서와 마찬가지로 한국의 대중가요는 교육적 콘텐츠로써 활용될 필요가 있다. 이를 위해 본 논문은 학술적 연구대상으로 대중가요의 정립과 분석을 그 활용 방안으로 제시하고 있으며 또한 대중가요의 작곡가와 시대별 가요경향에 대한 데이터베이스 구축의 필요와 효과를 고찰하였다. 이러한 연구를 통해 대중음악에 대한 학술적 발전과 다양한 사회적 활용의 기반이 마련되어질 수 있으며 또한 예술교육의 내용적 측면에서도 많은 부분 기여할 수 있다.

Decorrelated Filter Bank를 이용한 음악 장르 분류 시스템 (Music Genre Classification System Using Decorrelated Filter Bank)

  • 임신철;장세진;이석필;김무영
    • 한국음향학회지
    • /
    • 제30권2호
    • /
    • pp.100-106
    • /
    • 2011
  • 음원의 디지털화가 진행되면서 음악 데이터베이스가 방대해지고 있다. 따라서, 음악 데이터를 보다 효과적으로 관리하기 위해 음악의 특성에 따라 장르별로 자동 분류해주는 시스템이 필요하다. 기존 장르 분류 시스템은 대부분 Mel-Frequency Cepstral Coefficient (MFCC)를 특징 벡터로 이용하고 있다. 본 논문에서는 Auditory Filter Bank를 이용한 Decorrelated Filter Bank (DFB)와 Octave-based Spectral Contrast (OSC)에 texture window를 적용하여 특징을 추출한 후, Support Vector Machine (SVM)을 이용하여 장르 분류를 시도하였다. 기존의 Marsyas 장르 분류 시스템과 비교한 결과 DFB와 OSC로 복합적인 특징 벡터를 구성하면 더 적은 차수의 특징벡터를 사용함에도 4.2 %의 향상된 분류 성공률을 얻을 수 있었다.

디지털 음악시장에서 모바일 웹과 소셜네트워크서비스 사례연구 : 네오위즈벅스의 신경영 (A Case Study on Mobile Web and Social Network Service in Digital Music Market : The New Management of NeowizBugs)

  • 유병준;김관수
    • 한국전자거래학회지
    • /
    • 제16권1호
    • /
    • pp.1-15
    • /
    • 2011
  • 오늘날, 음악 서비스의 새로운 환경이 디지털 음악산업에 변화를 가져왔고. 다양한 형태의 음악 콘텐츠가 제공되고 있다. 따라서, 다양한 콘텐츠 확보가 독점적 경쟁 음악 시장에서 중요하다. 이러한 상황하에서, 웹 2.0은 다양한 소셜네트워크 환경을 제공하고, 소셜네트워크서비스는 기존의 정보중심 인터넷서비스와는 다른 인적관계를 중시한다. 모바일 소셜네트워크서비스는 모바일 기기사용이 증가함에 따라 사회적으로 이슈화 되고 있다. 네오위즈벅스는 음악 특성화된 소셜네트워크서비스인 세이클럽을 운영하는 네오위즈인터넷과 합병했다. 그리고 에스엠 엔터테인먼트와 콘텐츠관련 협약을 체결했다. 따라서, 통합법인은 확보된 디지털 콘텐츠와 소셜네트워크서비스를 연동시키는 비즈니스 모델을 확보, 운용하고 있다. 일반적으로 음악특화 소셜네트워크서비스는 광고기반 비즈니스 모델과 음악추천 시스템을 활용한다. 본 연구는 네오위즈벅스 사례를 소개함으로써, 웹 2.0, 모바일 소셜네트워크서비스, 스마트폰 등을 포함하는 유비쿼터스 환경에 알맞은 음악 유통사의 성공전략을 알아보고자 한다.

영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법 (Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation)

  • 유띳로따낙;누르지드;하인애;조근식
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.57-77
    • /
    • 2013
  • 소셜 미디어는 모바일 어플리케이션과 웹에서 가장 많이 사용되는 미디어 중 하나이다. Nielsen사의 보고서에 따르면 소셜 네트워크 서비스와 블로그가 온라인 사용자의 주 활동 공간으로 사용되고 있으며, 미국인 중에서 온라인 활동이 왕성한 5명의 사용자중 4명은 매일 소셜 네트워크 서비스와 블로그를 방문하고 온라인 활동 시간의 23%를 소비한다고 집계하고 있다. 미국의 인터넷 사용자들은 야후, 구글, AOL 미디어 네트워크, 트위터, 링크드인 등과 같은 소셜 네트워크 서비스중 페이스북에서 가장 많은 시간을 소비한다. 최근에는 대부분의 회사들이 자신의 특정 상품에 대하여 "페이스북 페이지(Facebook Page)"를 생성하고 상품에 대한 프로모션을 진행한다. 페이스북에서 제공되는 "좋아요" 옵션은 페이스북 페이지를 통해 자신이 관심을 가지는 상품(아이템)을 표시하고 그 상품을 지지할 수 있도록 한다. 많은 영화를 제작하는 영화 제작사들도 페이스북 페이지와 "좋아요" 옵션을 이용하여 영화 프로모션과 마케팅에 이용한다. 일반적으로 다수의 스트리밍 서비스 제공업들도 영화와 TV 프로그램을 즐기며 볼 수 있는 서비스를 사용자들에게 제공한다. 이 서비스는 일반 컴퓨터와 TV 등의 단말기에서인터넷을 통해 영화와 TV 프로그램을 즉각적으로 제공할 수 있다. 스트리밍 서비스의 선두 주자인 넷플릭스는 미국, 라틴 아메리카, 영국 그리고 북유럽 국가 등에 3천만 명 이상의 스트리밍 사용자가 가입되어 있다. 또한 넥플릭스는 다양한 장르로 구성된 수백만 개의 영화와 TV 프로그램을 보유하고 있다. 하지만 수많은 콘텐츠로 인해 사용자들은 자신이 선호하는 장르에 관련된 영화와 TV 프로그램을 찾기 위해 많은 시간을 소비해야 된다. 많은 연구자들이 이러한 사용자의 불편함을 줄이기 위해 아이템에 대한 사용자가 보지 않은 아이템에 대한 선호도를 예측하고 높은 예측값을 갖는 아이템을 사용자에게 제공하기 위한 추천 시스템을 적용하였다. 협업적 여과 방법은 추천 시스템을 구축하기 위해 가장 많이 사용되는 방법이다. 협업적 여과 시스템은 사용자들이 평가한 아이템을 기반으로 각 사용자 간의 유사도를 측정하고 목적 사용자와 유사한 성향을 가진 사용자 그룹을 결정한다. 군집된 그룹은 이웃 사용자 집단으로 불리며 이를 이용하여 특정 아이템에 대한 선호도를 예측하고, 예측 값이 높은 아이템을 목적 사용자에게 추천해 준다. 협업적 여과 방법이 적용되는 분야는 서적, 음악, 영화, 뉴스 및 비디오 등 다양하지만 논문에서는 영화에 초점을 맞춘다. 이 협업적 여과 방법이 추천 시스템 내에서 유용하게 활용되고 있지만 아직 "희박성 문제"와 "콜드 스타트 문제" 등 해결해야 할 과제가 남아있다. 희박성 문제는 아이템의 수가 증가할수록 아이템에 대한 사용자의 로그 밀도가 감소하는 것이다. 즉, 전체 아이템 수에 비해 사용자가 아이템에 대해 평가한 정보가 충분하지 않기 때문에 사용자의 성향을 파악하기 어렵고, 이로 인해 사용자가 아직 평가하지 않은 아이템에 대해서 선호도를 추측하기 어려운 것을 말한다. 이 희박성 문제가 포함된 경우 적합한 이웃 사용자 집단을 형성하는데 어려움을 겪게 되고 사용자들에게 제공되는 아이템 추천의 질이 떨어지게 된다. 콜드 스타트 문제는 시스템 내에 새로 들어온 사용자 또는 아이템으로 지금까지 한 번도 평가를 하지 않은 경우에 발생한다. 즉, 사용자가 평가한 아이템에 대한 정보가 전혀 포함되어 있지 않거나 매우 적기 때문에 이러한 경우 또한 적합한 이웃 사용자 집단을 형성하는데 어려움을 겪게 되고 사용자가 평가하지 않은 아이템에 대한 선호도 예측의 정확성이 감소되게 된다. 본 논문에서는 영화 추천 시스템에서 발생될 수 있는 초기 사용자 문제를 해결하기 위하여 사용자가 평가한 영화와 소셜 네트워크 서비스로부터 추출된 사용자 선호 장르를 활용하여 사용자 군집을 형성하고 이를 활용하는 방법을 제안한다. 소셜 네트워크 서비스로부터 사용자가 선호하는 영화 장르를 추출하기 위해 페이스북 페이지의 '좋아요' 옵션을 이용하며, 이 '좋아요' 정보를 분석하여 사용자의 영화 장르 관심사를 추출한다. 페이스북의 영화 페이지는 각 영화를 위한 페이스북 페이지로 구성되고 있으며, 사용자는 자신의 선호도에 따라서 "좋아요" 옵션을 선택할 수 있다. 사용자의 페이스북 정보는 페이스북 그래프 API를 활용하여 추출되고 이로부터 사용자 선호 영화를 알 수 있게 된다. 시스템에서 활용되는 영화 정보는 인터넷 영화 데이터베이스인 IMDb로부터 획득한다. IMDb는 수많은 영화와 TV 프로그램을 보유하고 있으며, 각 영화에 관련된 배우 정보, 장르 및 부가 정보들을 포함한다. 논문에서는 사용자가 "좋아요" 표시를 한 영화 페이지를 이용하여 IMDb로부터 영화 장르 정보를 가져온다. 그리고 추출된 영화 장르 선호도와 본 시스템에서 제안하는 영화 평가 항목을 이용하여 유사한 이웃 사용자 집단을 구성한 후, 사용자가 평가하지 않은 아이템에 대한 선호도를 예측하고, 높은 예측 값을 갖는 아이템을 사용자에게 추천한다. 본 논문에서 제안한 사용자의 선호 장르 기반의 사용자 군집 기법을 이용한 시스템을 평가하기 위해서 IMDb 데이터 집합을 이용하여 사용자 영화 평가 시스템을 구축하였고 참가자들의 영화 평가 정보를 획득하였다. 페이스북 영화 페이지 정보는 참가자들의 페이스북 계정과 페이스북 그래프 API를 통해 획득하였다. 사용자 영화 평가 시스템을 통해 획득된 사용자 데이터를 제안하는 방법에 적용하였고 추천 성능, 품질 및 초기 사용자 문제를 벤치마크 알고리즘과 비교하여 평가하였다. 실험 평가의 결과 제안하는 방법을 적용한 추천 시스템을 통해 추천의 품질을 10% 향상시킬 수 있었고, 초기 사용자 문제에 대해서 15% 완화시킬 수 있음을 볼 수 있었다.