• Title/Summary/Keyword: Database Algorithm

Search Result 1,655, Processing Time 0.032 seconds

Prefetching based on the Type-Level Access Pattern in Object-Relational DBMSs (객체관계형 DBMS에서 타입수준 액세스 패턴을 이용한 선인출 전략)

  • Han, Wook-Shin;Moon, Yang-Sae;Whang, Kyu-Young
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.529-544
    • /
    • 2001
  • Prefetching is an effective method to minimize the number of roundtrips between the client and the server in database management systems. In this paper we propose new notions of the type-level access pattern and the type-level access locality and developed an efficient prefetchin policy based on the notions. The type-level access patterns is a sequence of attributes that are referenced in accessing the objects: the type-level access locality a phenomenon that regular and repetitive type-level access patterns exist. Existing prefetching methods are based on object-level or page-level access patterns, which consist of object0ids of page-ids of the objects accessed. However, the drawback of these methods is that they work only when exactly the same objects or pages are accessed repeatedly. In contrast, even though the same objects are not accessed repeatedly, our technique effectively prefetches objects if the same attributes are referenced repeatedly, i,e of there is type-level access locality. Many navigational applications in Object-Relational Database Management System(ORDBMs) have type-level access locality. Therefore our technique can be employed in ORDBMs to effectively reduce the number of roundtrips thereby significantly enhancing the performance. We have conducted extensive experiments in a prototype ORDBMS to show the effectiveness of our algorithm. Experimental results using the 007 benchmark and a real GIS application show that our technique provides orders of magnitude improvements in the roundtrips and several factors of improvements in overall performance over on-demand fetching and context-based prefetching, which a state-of the art prefetching method. These results indicate that our approach significantly and is a practical method that can be implemented in commercial ORDMSs.

  • PDF

A Reflectance Normalization Via BRDF Model for the Korean Vegetation using MODIS 250m Data (한반도 식생에 대한 MODIS 250m 자료의 BRDF 효과에 대한 반사도 정규화)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.445-456
    • /
    • 2005
  • The land surface parameters should be determined with sufficient accuracy, because these play an important role in climate change near the ground. As the surface reflectance presents strong anisotropy, off-nadir viewing results a strong dependency of observations on the Sun - target - sensor geometry. They contribute to the random noise which is produced by surface angular effects. The principal objective of the study is to provide a database of accurate surface reflectance eliminated the angular effects from MODIS 250m reflective channel data over Korea. The MODIS (Moderate Resolution Imaging Spectroradiometer) sensor has provided visible and near infrared channel reflectance at 250m resolution on a daily basis. The successive analytic processing steps were firstly performed on a per-pixel basis to remove cloudy pixels. And for the geometric distortion, the correction process were performed by the nearest neighbor resampling using 2nd-order polynomial obtained from the geolocation information of MODIS Data set. In order to correct the surface anisotropy effects, this paper attempted the semiempirical kernel-driven Bi- directional Reflectance Distribution Function(BRDF) model. The algorithm yields an inversion of the kernel-driven model to the angular components, such as viewing zenith angle, solar zenith angle, viewing azimuth angle, solar azimuth angle from reflectance observed by satellite. First we consider sets of the model observations comprised with a 31-day period to perform the BRDF model. In the next step, Nadir view reflectance normalization is carried out through the modification of the angular components, separated by BRDF model for each spectral band and each pixel. Modeled reflectance values show a good agreement with measured reflectance values and their RMSE(Root Mean Square Error) was totally about 0.01(maximum=0.03). Finally, we provide a normalized surface reflectance database consisted of 36 images for 2001 over Korea.

A Study on Training Dataset Configuration for Deep Learning Based Image Matching of Multi-sensor VHR Satellite Images (다중센서 고해상도 위성영상의 딥러닝 기반 영상매칭을 위한 학습자료 구성에 관한 연구)

  • Kang, Wonbin;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1505-1514
    • /
    • 2022
  • Image matching is a crucial preprocessing step for effective utilization of multi-temporal and multi-sensor very high resolution (VHR) satellite images. Deep learning (DL) method which is attracting widespread interest has proven to be an efficient approach to measure the similarity between image pairs in quick and accurate manner by extracting complex and detailed features from satellite images. However, Image matching of VHR satellite images remains challenging due to limitations of DL models in which the results are depending on the quantity and quality of training dataset, as well as the difficulty of creating training dataset with VHR satellite images. Therefore, this study examines the feasibility of DL-based method in matching pair extraction which is the most time-consuming process during image registration. This paper also aims to analyze factors that affect the accuracy based on the configuration of training dataset, when developing training dataset from existing multi-sensor VHR image database with bias for DL-based image matching. For this purpose, the generated training dataset were composed of correct matching pairs and incorrect matching pairs by assigning true and false labels to image pairs extracted using a grid-based Scale Invariant Feature Transform (SIFT) algorithm for a total of 12 multi-temporal and multi-sensor VHR images. The Siamese convolutional neural network (SCNN), proposed for matching pair extraction on constructed training dataset, proceeds with model learning and measures similarities by passing two images in parallel to the two identical convolutional neural network structures. The results from this study confirm that data acquired from VHR satellite image database can be used as DL training dataset and indicate the potential to improve efficiency of the matching process by appropriate configuration of multi-sensor images. DL-based image matching techniques using multi-sensor VHR satellite images are expected to replace existing manual-based feature extraction methods based on its stable performance, thus further develop into an integrated DL-based image registration framework.

Rainfall image DB construction for rainfall intensity estimation from CCTV videos: focusing on experimental data in a climatic environment chamber (CCTV 영상 기반 강우강도 산정을 위한 실환경 실험 자료 중심 적정 강우 이미지 DB 구축 방법론 개발)

  • Byun, Jongyun;Jun, Changhyun;Kim, Hyeon-Joon;Lee, Jae Joon;Park, Hunil;Lee, Jinwook
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.403-417
    • /
    • 2023
  • In this research, a methodology was developed for constructing an appropriate rainfall image database for estimating rainfall intensity based on CCTV video. The database was constructed in the Large-Scale Climate Environment Chamber of the Korea Conformity Laboratories, which can control variables with high irregularity and variability in real environments. 1,728 scenarios were designed under five different experimental conditions. 36 scenarios and a total of 97,200 frames were selected. Rain streaks were extracted using the k-nearest neighbor algorithm by calculating the difference between each image and the background. To prevent overfitting, data with pixel values greater than set threshold, compared to the average pixel value for each image, were selected. The area with maximum pixel variability was determined by shifting with every 10 pixels and set as a representative area (180×180) for the original image. After re-transforming to 120×120 size as an input data for convolutional neural networks model, image augmentation was progressed under unified shooting conditions. 92% of the data showed within the 10% absolute range of PBIAS. It is clear that the final results in this study have the potential to enhance the accuracy and efficacy of existing real-world CCTV systems with transfer learning.

Construction of Land Information System using Three Dimensional Digital Elevation Model Algorithm (3차원 지형모델 알고리즘을 이용한 토지정보체계 구축)

  • Kang, Ho-Yun;Chang, Yong-Ku;Kang, In-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.3
    • /
    • pp.31-40
    • /
    • 2001
  • Geography Information System is divided to many details fields such as Urban Information System, Land Information System, Military Information System etc. These detailed fields are connected each other and make National Geography Information System. Now Geography Information System is being used in many fields with Urban Information System. And information of all field is being constructed to network for share each other. Now Land Information System(LIS) is being constructed to two dimensional. But LIS can construct and utilize three dimensional geographic data by connecting Geography Information System and this effect will be greatest. Thus, the study of connecting cadastral map and digital terrain map must be continued. Through the study of connecting digital terrain map, the construction and analysis of three dimensional digital elevation model will be able to construct Land Information System effectively. To this study, the authors constructed integrated geographic data by uniting digital terrain map and cadastral map and constructed three dimensional digital elevation model. By connecting cadastral information database, the authors developed three dimensional Integrated Land Information System.

  • PDF

Automatic Coastline Extraction and Change Detection Monitoring using LANDSAT Imagery (LANDSAT 영상을 이용한 해안선 자동 추출과 변화탐지 모니터링)

  • Kim, Mi Kyeong;Sohn, Hong Gyoo;Kim, Sang Pil;Jang, Hyo Seon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.45-53
    • /
    • 2013
  • Global warming causes sea levels to rise and global changes apparently taking place including coastline changes. Coastline change due to sea level rise is also one of the most significant phenomena affected by global climate change. Accordingly, Coastline change detection can be utilized as an indicator of representing global climate change. Generally, Coastline change has happened mainly because of not only sea level rise but also artificial factor that is reclaimed land development by mud flat reclamation. However, Arctic coastal areas have been experienced serious change mostly due to sea level rise rather than other factors. The purposes of this study are automatic extraction of coastline and identifying change. In this study, in order to extract coastline automatically, contrast of the water and the land was maximized utilizing modified NDWI(Normalized Difference Water Index) and it made automatic extraction of coastline possibile. The imagery converted into modified NDWI were applied image processing techniques in order that appropriate threshold value can be found automatically to separate the water and land. Then the coastline was extracted through edge detection algorithm and changes were detected using extracted coastlines. Without the help of other data, automatic extraction of coastlines using LANDSAT was possible and similarity was found by comparing NLCD data as a reference data. Also, the results of the study area that is permafrost always frozen below $0^{\circ}C$ showed quantitative changes of the coastline and verified that the change was accelerated.

Metagenomic analysis of bacterial community structure and diversity of lignocellulolytic bacteria in Vietnamese native goat rumen

  • Do, Thi Huyen;Dao, Trong Khoa;Nguyen, Khanh Hoang Viet;Le, Ngoc Giang;Nguyen, Thi Mai Phuong;Le, Tung Lam;Phung, Thu Nguyet;Straalen, Nico M. van;Roelofs, Dick;Truong, Nam Hai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.738-747
    • /
    • 2018
  • Objective: In a previous study, analysis of Illumina sequenced metagenomic DNA data of bacteria in Vietnamese goats' rumen showed a high diversity of putative lignocellulolytic genes. In this study, taxonomy speculation of microbial community and lignocellulolytic bacteria population in the rumen was conducted to elucidate a role of bacterial structure for effective degradation of plant materials. Methods: The metagenomic data had been subjected into Basic Local Alignment Search Tool (BLASTX) algorithm and the National Center for Biotechnology Information non-redundant sequence database. Here the BLASTX hits were further processed by the Metagenome Analyzer program to statistically analyze the abundance of taxa. Results: Microbial community in the rumen is defined by dominance of Bacteroidetes compared to Firmicutes. The ratio of Firmicutes versus Bacteroidetes was 0.36:1. An abundance of Synergistetes was uniquely identified in the goat microbiome may be formed by host genotype. With regard to bacterial lignocellulose degraders, the ratio of lignocellulolytic genes affiliated with Firmicutes compared to the genes linked to Bacteroidetes was 0.11:1, in which the genes encoding putative hemicellulases, carbohydrate esterases, polysaccharide lyases originated from Bacteroidetes were 14 to 20 times higher than from Firmicutes. Firmicutes seem to possess more cellulose hydrolysis capacity showing a Firmicutes/Bacteroidetes ratio of 0.35:1. Analysis of lignocellulolytic potential degraders shows that four species belonged to Bacteroidetes phylum, while two species belonged to Firmicutes phylum harbouring at least 12 different catalytic domains for all lignocellulose pretreatment, cellulose, as well as hemicellulose saccharification. Conclusion: Based on these findings, we speculate that increasing the members of Bacteroidetes to keep a low ratio of Firmicutes versus Bacteroidetes in goat rumen has resulted most likely in an increased lignocellulose digestion.

Analysis of Research Topics among Library, Archives and Museums using Topic Modeling (토픽 모델링을 활용한 도서관, 기록관, 박물관간의 연구 주제 분석)

  • Kim, Heesop;Kang, Bora
    • Journal of Korean Library and Information Science Society
    • /
    • v.50 no.4
    • /
    • pp.339-358
    • /
    • 2019
  • The purpose of this study is to understand the topics of the research for the establishment of cooperative platform between libraries, archives, and museums that carry out the common task of providing knowledge information in a broad sense. To achieve the purpose of this study, 637 bibliographic information on three institutions were collected from the Web version of Scopus database. Among the collected bibliographic information, 5,218 words were extracted through NetMiner V.4 and analysed topic modeling. The results are as follows: First, as a result of analyzing the frequency of word appearance according to the tf-idf weight 'Preservation' was the most hottest topic. Second, the topic modeling analysis through LDA(Latent Dirichlet Allocation) algorithm resulted in 13 topic areas. Third, as a result of expressing 13 topic areas as a network, repository construction was the central topic, and the research topics such as cooperation among institutions, conservation environment for collections, system and policy discovery, life cycle of collections, exhibition of information resources, and information retrieval were closely related to the central topic. Fourth, the trend of 13 topic areas by year 1998 is limited to the specific subjects such as system and policy discovery, information retrieval, and life cycle of collections, while the subsequent studies have been carried out after that year.

Development of a Face Detection and Recognition System Using a RaspberryPi (라즈베리파이를 이용한 얼굴검출 및 인식 시스템 개발)

  • Kim, Kang-Chul;Wei, Hai-tong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.859-864
    • /
    • 2017
  • IoT is a new emerging technology to lead the $4^{th}$ industry renovation and has been widely used in industry and home to increase the quality of human being. In this paper, IoT based face detection and recognition system for a smart elevator is developed. Haar cascade classifier is used in a face detection system and a proposed PCA algorithm written in Python in the face recognition system is implemented to reduce the execution time and calculates the eigenfaces. SVM or Euclidean metric is used to recognize the faces detected in the face detection system. The proposed system runs on RaspberryPi 3. 200 sample images in ORL face database are used for training and 200 samples for testing. The simulation results show that the recognition rate is over 93% for PP+EU and over 96% for PP+SVM. The execution times of the proposed PCA and the conventional PCA are 0.11sec and 1.1sec respectively, so the proposed PCA is much faster than the conventional one. The proposed system can be suitable for an elevator monitoring system, real time home security system, etc.

Customized Configuration with Template and Options (맞춤구성을 위한 템플릿과 Option 기반의 추론)

  • 이현정;이재규
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.119-139
    • /
    • 2002
  • In electronic catalogs, each item is represented as an independent unit while the parts of the item can be composed of a higher level of functionality. Thus, the search for this kind of product database is limited to the retrieval of most similar standard commodities. However, many industrial products need to configure optional parts to fulfill the required specifications. Since there are many paths in finding the required specifications, we need to develop a search system via the configuration process. In this system, we adopt a two-phased approach. The first phase finds the most similar template, and the second phase adjusts the template specifications toward the required set of specifications by the Constraint and Rule Satisfaction Problem approach. There is no guarantee that the most similar template can find the most desirable configuration. The search system needs backtracking capability, so the search can stop at a satisfied local optimal satisfaction. This framework is applied to the configuration of computers and peripherals. Template-based reasoning is basically the same as case-based reasoning. The required set of specifications is represented by a list of criteria, and matched with the product specifications to find the closest ones. To measure the distance, we develop a thesaurus of values, which can identify the meaning of numbers, symbols, and words. With this configuration, the performance of the search by configuration algorithm is evaluated in terms of feasibility and admissibility.

  • PDF