• Title/Summary/Keyword: Data-driven model

Search Result 681, Processing Time 0.023 seconds

A Study on the Economic Efficiency of Tourism Industry in China's Bohai Rim Region Using DEA Model (DEA 모델을 이용한 중국 환 발해만 지역 관광산업의 경제효율성에 관한 연구)

  • Li Ting;Jae Yeon Sim
    • Industry Promotion Research
    • /
    • v.8 no.4
    • /
    • pp.267-276
    • /
    • 2023
  • Based on the tourism input-output data of five provinces and cities in China's Bohai Rim region from 2015~2021, this study analyzes the efficiency of regional tourism using DEA-BCC and DEA-Malmquist index, as well as its contribution to regional economic efficiency, and identifies factors influencing the comprehensive efficiency. The research results indicate that the comprehensive efficiency of the tourism industry in the China Bohai Sea region has reached an optimal level of 88.9%, but there is still room for improvement, with overall fluctuations. The overall productivity of the tourism industry exhibits a "U"-shaped fluctuating pattern, with growth mainly driven by technological advancements. Due to the impact of the COVID-19 pandemic, the region experienced a nearly 50% decrease in total factor productivity in 2019~2020. However, in 2021, with the implementation of various government stimulus policies, the tourism efficiency rapidly recovered to 80% of pre-pandemic levels. In terms of the impact of the tourism industry on the regional economy in the China Bohai Sea region, Hebei Province stands out as a significant contributor. Based on the aforementioned research findings, the following recommendations are proposed in three aspects: optimizing the supply structure, increasing innovation investment, and strengthening internal collaboration. These recommendations provide valuable insights for enhancing regional tourism efficiency and promoting regional synergy.

Overview of the Korean Marine Industry and VPP Analysis of a 28ft Sailing Yacht (대한민국의 해양 레저 시장 및 28ft급 세일요트의 VPP 성능해석 연구)

  • Yeongmin Park;Hoyun Jang;Minsu Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.365-372
    • /
    • 2024
  • The South Korean marine industry is emerging as a significant market, driven by the growing popularity of various water leisure activities, including sailing. This trend suggests a rising demand for sailing yachts. Consequently, since 2022, the design and development of a 28ft sailing yacht have been ongoing, supported by the government and the Ministry of Oceans and Fisheries, to promote yachting culture in South Korea. The Velocity Prediction Program (VPP) analysis was conducted using WinDesign during the preliminary design stage to evaluate performance and determine design parameters. The hydrodynamic model used for this vessel is based on regression methods developed from years of experience in naval architecture and yacht research at the Wolfson Unit, providing reliable estimates for most modern yachts. However, owing to the lack of specific hydrodynamic data from towing tank tests or CFD numerical analysis, verification of the hydrodynamic model has faced some challenges. Additionally, an incomplete weight estimate resulted in variable VCG values, potentially affecting stability and overall performance. The optimal boat speed for this vessel was determined at true wind speeds (TWS) of 4, 8, 12, 16, and 20 knots, using both the jib (up to 120° TWA) and the spinnaker (from 80° TWA). The optimized speed of the yacht was found to be comparable to that of international similar-class yachts.

The Experiences of Patients Seeking Alternative Therapies for Chronic Liver Disease - The Process of Jagi Momdasrim - (만성 간환자의 대체요법 추구 경험 - 자기 몸 다스림 과정 -)

  • Son, Haeng Mi;Suh, Moon Ja
    • Korean Journal of Adult Nursing
    • /
    • v.12 no.1
    • /
    • pp.52-63
    • /
    • 2000
  • In Korea, most of the patients with chronic liver diseases have been using some kind of alternative therapies at home. however, the question is why do people turn to alternative therapy and how the patients are able to use the alternative therapies widely, though the effects have not been proven scientifically. Therefore, it is necessary to explore the process of the patients' experiences using the alternative therapies. The 16 participants were from internalmedical departments in hospital and the permission was received to participate in this study from the subjects. The data were collected with interviews and participants observations, analyzed by the grounded theory methodology of Strauss and Corbin(1990). With the analysis of the data, 15 categories were generated such as psychological pressures, barriers of role performances, distrusts of western medicine, blind obediences to the treatments, attitudes towards alternative therapies, supportive systems, obstacles to taking alternative therapies, financial burdens, collecting informations, pursuing alternative modalities, efforting diversities, analyzing by themselves, managing the body, accepting the disease, and ambivalence. The paradigm model was developed to identify the relationships of categories. The central phenomenon of the experiences of seeking alternative therapies was named jagi momdasrim. The central concept of jagi momdasrim is a mind-set to desire to wellness and to take more responsibility for one's own healing by pursuing alternate healing modalities rather than the western medical system. The process of jagi momdasrim evolved several stages such as seeking, finding, struggling, overcoming, fulfilling, and governing the diseases. Four patterns of taking alternative therapies were found as follows: the bulsin-chujong-hyung, the suyoung-hyung, the yangdari-gulchiki-hyung, the chamjae-hyung. In conclusion, the phenomenon of alternative therapies as consumer-driven force to heal the chronic liver diseases of the patients could be explained as an adaptive behavior through the process of jagi momdasrim. However, since most of the participants practicing some kind of alternative therapies had no evidences of its effects and never tried to consult with their medical doctors about alternative therapies, we should approach more actively. Therefore, it is recommended for nurses to listen and watch the patients behaviors of using alternative therapies and find out how to educate the patients about the proper and safe way to take the alternative therapies.

  • PDF

A Study on the Startup Growth Stage in Korea (스타트업 성장단계 구분에 대한 탐색적 연구)

  • Kim, Sunwoo;Kim, Kangmin
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.15 no.2
    • /
    • pp.127-135
    • /
    • 2020
  • The purpose of this paper is to classify individual startups by growth stage based on data-based quantitative criteria. This is to provide a basis for systematic support for government startups based on accurate statistics on the startup growth process. This startups were the TIPS (Tech Incubator Program for Startup) support company, which used a relatively reliable startup. We found seed money to complete MVP (Minimum Viable Product) within 1.5 years after establishment, verified PMF (Product-Market Fit) within 1 year, attracted Series A investment within 2.5 years after establishment, and successfully commercialized it. It attracted Series B investment for stable growth within 1.5 years (Series B investment within 4 years from start-up). The results of the study, the division of government programs that support stage-based startup commercialization, that is, within three years and within seven years of establishment, is significant to date. Three directions are suggested for future research. First, develop indicators for monitoring startup growth stages. Second, it continuously updates the annual changes and tracks the growth stages of individual startups. Third, we discover the successful growth law of technology-based startups by applying in-depth case analysis of successful startups to the model.

The Effects of Rapport Building Behaviors on Relationship Quality and Behavioral Intentions (라포형성행동이 관계품질과 행동의도에 미치는 영향에 관한 연구 )

  • Lee, Yong-ji;Cheon, Hong-sik
    • Journal of Venture Innovation
    • /
    • v.7 no.2
    • /
    • pp.101-123
    • /
    • 2024
  • Since COVID-19 crisis, health concerns and the need for interpersonal activities have driven many people to engage in leisure activities, which has naturally led to a steady increase in the participation rate of life sports. However, the start-up rate of sports facilities is decreasing and the closure rate is steadily increasing, and to survive in the over-competitive situation, sports facility operators need to develop and provide services with competitive advantages and come up with differentiated marketing plans. The purposes of this study were to (a) identify rapport-building behaviors for bring about relationship quality, customer satisfaction and customer trust, to a service provider in the sports leisure service environment (b) examine the ways in which customer satisfaction and customer trust induces positive behavior intentions in the sports leisure service environment, and (c) empirically verify the path of rapport- building behaviors through customer quality to continuance intention and WTPP(willing to pay premium price). The proposed conceptual model was empirically tested via structural equation modeling analysis using data collected from 350 adults who enjoy sports leisure services nationwide. Based on data analysis, firstly, attentive behavior, connecting behavior, courteous behavior, and information sharing behavior, were found to have a positive effect on relationship quality ,customer satisfaction and customer trust. Second, customer satisfaction was found to have a positive effect on both continuance intention and WTPP. Third, customer trust, a subcomponent of relationship quality, was found to have a positive effect on continuance intention, but not on WTPP. The findings of this study show that, first, rapport building with customers is important for sustainable growth management in the increasingly competitive sports and leisure service environment.

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

Minimizing Estimation Errors of a Wind Velocity Forecasting Technique That Functions as an Early Warning System in the Agricultural Sector (농업기상재해 조기경보시스템의 풍속 예측 기법 개선 연구)

  • Kim, Soo-ock;Park, Joo-Hyeon;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.63-77
    • /
    • 2022
  • Our aim was to reduce estimation errors of a wind velocity model used as an early warning system for weather risk management in the agricultural sector. The Rural Development Administration (RDA) agricultural weather observation network's wind velocity data and its corresponding estimated data from January to December 2020 were used to calculate linear regression equations (Y = aX + b). In each linear regression, the wind estimation error at 87 points and eight time slots per day (00:00, 03:00, 06:00, 09.00, 12.00, 15.00, 18.00, and 21:00) is the dependent variable (Y), while the estimated wind velocity is the independent variable (X). When the correlation coefficient exceeded 0.5, the regression equation was used as the wind velocity correction equation. In contrast, when the correlation coefficient was less than 0.5, the mean error (ME) at the corresponding points and time slots was substituted as the correction value instead of the regression equation. To enable the use of wind velocity model at a national scale, a distribution map with a grid resolution of 250 m was created. This objective was achieved b y performing a spatial interpolation with an inverse distance weighted (IDW) technique using the regression coefficients (a and b), the correlation coefficient (R), and the ME values for the 87 points and eight time slots. Interpolated grid values for 13 weather observation points in rural areas were then extracted. The wind velocity estimation errors for 13 points from January to December 2019 were corrected and compared with the system's values. After correction, the mean ME of the wind velocities reduced from 0.68 m/s to 0.45 m/s, while the mean RMSE reduced from 1.30 m/s to 1.05 m/s. In conclusion, the system's wind velocities were overestimated across all time slots; however, after the correction model was applied, the overestimation reduced in all time slots, except for 15:00. The ME and RMSE improved b y 33% and 19.2%, respectively. In our system, the warning for wind damage risk to crops is driven by the daily maximum wind speed derived from the daily mean wind speed obtained eight times per day. This approach is expected to reduce false alarms within the context of strong wind risk, by reducing the overestimation of wind velocities.

The Analysis on the Relationship between Firms' Exposures to SNS and Stock Prices in Korea (기업의 SNS 노출과 주식 수익률간의 관계 분석)

  • Kim, Taehwan;Jung, Woo-Jin;Lee, Sang-Yong Tom
    • Asia pacific journal of information systems
    • /
    • v.24 no.2
    • /
    • pp.233-253
    • /
    • 2014
  • Can the stock market really be predicted? Stock market prediction has attracted much attention from many fields including business, economics, statistics, and mathematics. Early research on stock market prediction was based on random walk theory (RWT) and the efficient market hypothesis (EMH). According to the EMH, stock market are largely driven by new information rather than present and past prices. Since it is unpredictable, stock market will follow a random walk. Even though these theories, Schumaker [2010] asserted that people keep trying to predict the stock market by using artificial intelligence, statistical estimates, and mathematical models. Mathematical approaches include Percolation Methods, Log-Periodic Oscillations and Wavelet Transforms to model future prices. Examples of artificial intelligence approaches that deals with optimization and machine learning are Genetic Algorithms, Support Vector Machines (SVM) and Neural Networks. Statistical approaches typically predicts the future by using past stock market data. Recently, financial engineers have started to predict the stock prices movement pattern by using the SNS data. SNS is the place where peoples opinions and ideas are freely flow and affect others' beliefs on certain things. Through word-of-mouth in SNS, people share product usage experiences, subjective feelings, and commonly accompanying sentiment or mood with others. An increasing number of empirical analyses of sentiment and mood are based on textual collections of public user generated data on the web. The Opinion mining is one domain of the data mining fields extracting public opinions exposed in SNS by utilizing data mining. There have been many studies on the issues of opinion mining from Web sources such as product reviews, forum posts and blogs. In relation to this literatures, we are trying to understand the effects of SNS exposures of firms on stock prices in Korea. Similarly to Bollen et al. [2011], we empirically analyze the impact of SNS exposures on stock return rates. We use Social Metrics by Daum Soft, an SNS big data analysis company in Korea. Social Metrics provides trends and public opinions in Twitter and blogs by using natural language process and analysis tools. It collects the sentences circulated in the Twitter in real time, and breaks down these sentences into the word units and then extracts keywords. In this study, we classify firms' exposures in SNS into two groups: positive and negative. To test the correlation and causation relationship between SNS exposures and stock price returns, we first collect 252 firms' stock prices and KRX100 index in the Korea Stock Exchange (KRX) from May 25, 2012 to September 1, 2012. We also gather the public attitudes (positive, negative) about these firms from Social Metrics over the same period of time. We conduct regression analysis between stock prices and the number of SNS exposures. Having checked the correlation between the two variables, we perform Granger causality test to see the causation direction between the two variables. The research result is that the number of total SNS exposures is positively related with stock market returns. The number of positive mentions of has also positive relationship with stock market returns. Contrarily, the number of negative mentions has negative relationship with stock market returns, but this relationship is statistically not significant. This means that the impact of positive mentions is statistically bigger than the impact of negative mentions. We also investigate whether the impacts are moderated by industry type and firm's size. We find that the SNS exposures impacts are bigger for IT firms than for non-IT firms, and bigger for small sized firms than for large sized firms. The results of Granger causality test shows change of stock price return is caused by SNS exposures, while the causation of the other way round is not significant. Therefore the correlation relationship between SNS exposures and stock prices has uni-direction causality. The more a firm is exposed in SNS, the more is the stock price likely to increase, while stock price changes may not cause more SNS mentions.

A Study on Land Acquisition Priority for Establishing Riparian Buffer Zones in Korea (수변녹지 조성을 위한 토지매수 우선순위 산정 방안 연구)

  • Hong, Jin-Pyo;Lee, Jae-Won;Choi, Ok-Hyun;Son, Ju-Dong;Cho, Dong-Gil;Ahn, Tong-Mahn
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.4
    • /
    • pp.29-41
    • /
    • 2014
  • The Korean government has purchased land properties alongside any significant water bodies before setting up the buffers to secure water qualities. Since the annual budgets are limited, however, there has always been the issue of which land parcels ought to be given the priority. Therefore, this study aims to develop efficient mechanism for land acquisition priorities in stream corridors that would ultimately be vegetated for riparian buffer zones. The criteria of land acquisition priority were driven through literary review along with experts' advice. The relative weights of their value and priorities for each criterion were computed using the Analytical Hierarchy Process(AHP) method. Major findings of the study are as follows: 1. The decision-making structural model for land acquisition priority focuses mainly on the reduction of non-point source pollutants(NSPs). This fact is highly associated with natural and physical conditions and land use types of surrounding areas. The criteria were classified into two categories-NSPs runoff areas and potential NSPs runoff areas. 2. Land acquisition priority weights derived for NSPs runoff areas and potential NSPs runoff areas were 0.862 and 0.138, respectively. This implicates that much higher priority should be given to the land parcels with NSPs runoff areas. 3. Weights and priorities of sub-criteria suggested from this study include: proximity to the streams(0.460), land cover(0.189), soil permeability(0.117), topographical slope(0.096), proximity to the roads(0.058), land-use types(0.036), visibility to the streams(0.032), and the land price(0.012). This order of importance suggests, as one can expect, that it is better to purchase land parcels that are adjacent to the streams. 4. A standard scoring system including the criteria and weights for land acquisition priority was developed which would likely to allow expedited decision making and easy quantification for priority evaluation due to the utilization of measurable spatial data. Further studies focusing on both point and non-point pollutants and GIS-based spatial analysis and mapping of land acquisition priority are needed.