• Title/Summary/Keyword: Data-Driven Method

Search Result 537, Processing Time 0.027 seconds

IPDE(Integrated Product Data Environment) Implementation Method for the Application of Naval Ship PLM(Product Lifecycle Management) (함정 수명주기관리시스템(PLM) 구축을 위한 통합 자료환경(IPDE) 구현 방안)

  • Jeong, Yeon-Hwan;Lew, Jae-Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.698-709
    • /
    • 2005
  • This research analyzes the design work and construction work, which might be arising out of or during the procurement process of naval ships of the Korean Navy. This research also suggests the applicable information methodology driven out by utilizing PLM/POM tool, which could be one of practical solutions to the problems arising from the outcome of this analysis. As to the procedure and methodology of information technology of design and construction work of the ship, IPPD was adopted. Before its actual application, main contents of the IPPD were introduced in this research. And it's real application and subsequent concrete surroundings of IPDE were defined. In addition, addition, several detailed and necessary works to be fulfilled were defined, mainly focused on the application of IPDD for the design and construction stages of the ships suitable for the Korean Navy, And also, this analysis defines the main functions to be secured by adopting the PLM/POM tool and obtained the relevant functions partially herewith.

Structural properties of carbon nanotubes: The effect of substrate-biasing (기판 바이어스에 따른 탄소 나노튜브의 구조적 물성)

  • Park, Chang-Kyun;Yun, Sung-Jun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.36-37
    • /
    • 2006
  • Both negative and positive substrate bias effects on the structural properties and field-emission characteristics are investigated. carbon nanotubes (CNTs) are grown on Ni catalysts employing an inductively-coupled plasma chemical vapor deposition (ICP-CVD) method. Characterization using various techniques, such as field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Auger spectroscopy (AES), and Raman spectroscopy, shows that the physical dimension as well as the crystal quality of CNTs grown can be changed and controlled by the application of substrate bias during CNT growth. It is for the first time observed that the prevailing growth mechanism of CNTs, which is either due to tip-driven growth or based-on-catalyst growth, may be influenced by substrate biasing. It is also seen that negative biasing would be more effectively role in the vertical-alignment of CNTs compared to positive biasing. However, the CNTs grown under the positively bias condition display much better electron emission capabilities than those grown under negative bias or without bias. The reasons for all the measured data regarding the structural properties of CNTs are discussed to confirm the correlation with the observed field-emissive properties.

  • PDF

The Effect of Gesture-Command Pairing Condition on Learnability when Interacting with TV

  • Jo, Chun-Ik;Lim, Ji-Hyoun;Park, Jun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.525-531
    • /
    • 2012
  • Objective: The aim of this study is to investigate learnability of gestures-commands pair when people use gestures to control a device. Background: In vision-based gesture recognition system, selecting gesture-command pairing is critical for its usability in learning. Subjective preference and its agreement score, used in previous study(Lim et al., 2012) was used to group four gesture-command pairings. To quantify the learnability, two learning models, average time model and marginal time model, were used. Method: Two sets of eight gestures, total sixteen gestures were listed by agreement score and preference data. Fourteen participants divided into two groups, memorized each set of gesture-command pair and performed gesture. For a given command, time to recall the paired gesture was collected. Results: The average recall time for initial trials were differed by preference and agreement score as well as the learning rate R driven by the two learning models. Conclusion: Preference rate agreement score showed influence on learning of gesture-command pairs. Application: This study could be applied to any device considered to adopt gesture interaction system for device control.

Modeling of time-varying stress in concrete under axial loading and sulfate attack

  • Yin, Guang-Ji;Zuo, Xiao-Bao;Tang, Yu-Juan;Ayinde, Olawale;Ding, Dong-Nan
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.143-152
    • /
    • 2017
  • This paper has numerically investigated the changes of loading-induced stress in concrete with the corrosion time in the sulfate-containing environment. Firstly, based on Fick's law and reaction kinetics, a diffusion-reaction equation of sulfate ion in concrete is proposed, and it is numerically solved to obtain the spatial and temporal distribution of sulfate ion concentration in concrete by the finite difference method. Secondly, by fitting the existed experimental data of concrete in sodium sulfate solutions, the chemical damage of concrete associated with sulfate ion concentration and corrosion time is quantitatively presented. Thirdly, depending on the plastic-damage mechanics, while considering the influence of sulfate attack on concrete properties, a simplified chemo-mechanical damage model, with stress-based plasticity and strain-driven damage, for concrete under axial loading and sulfate attack is determined by introducing the chemical damage degree. Finally, an axially compressed concrete prism immersed into the sodium sulfate solution is regarded as an object to investigate the time-varying stress in concrete subjected to the couplings of axial loading and sulfate attack.

Minimization of Crosstalk by Optimum Synthesis of Profiles of Multiple Coupled Data Transmission Lines on Microstrip (다중결합된 마이크로스트립 데이터 전송로 자태의 최적합성을 통한 누화 최소화)

  • 박의준
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.1-11
    • /
    • 1998
  • A line profile synthesis method is presented that minimizes the nearest-neighbor crosstalk peak level for high-speed pulse transmission in multi-coupled microstrip signal buses. We adopted the optimization technique for the reflected wave control on bus lines resulting in increasing the average spacing between strip conductors, since in a parallel-conductor bus the crosstalk energy is concentrated at the nearest neighbors of the driven line. The generalized S-matrix technique is applied for the input and output waveform prediction, and crosstalk characteristics of various nonuniform lines synthesized for increasing the average spacing are analyzed by comparing each other. Simulation results demonstrate that the Chebyshev taper with dips is adequate to significantly minimize the crosstalk peak level under the satisfactory waveform integrity since the profile is oriented to evenly reflect significant pulse spectra within the frequency range of pulse.

  • PDF

A Partition Technique of UML-based Software Models for Multi-Processor Embedded Systems (멀티프로세서용 임베디드 시스템을 위한 UML 기반 소프트웨어 모델의 분할 기법)

  • Kim, Jong-Phil;Hong, Jang-Eui
    • The KIPS Transactions:PartD
    • /
    • v.15D no.1
    • /
    • pp.87-98
    • /
    • 2008
  • In company with the demand of powerful processing units for embedded systems, the method to develop embedded software is also required to support the demand in new approach. In order to improve the resource utilization and system performance, software modeling techniques have to consider the features of hardware architecture. This paper proposes a partitioning technique of UML-based software models, which focus the generation of the allocatable software components into multiprocessor architecture. Our partitioning technique, at first, transforms UML models to CBCFGs(Constraint-Based Control Flow Graphs), and then slices the CBCFGs with consideration of parallelism and data dependency. We believe that our proposition gives practical applicability in the areas of platform specific modeling and performance estimation in model-driven embedded software development.

TAPINS: A THERMAL-HYDRAULIC SYSTEM CODE FOR TRANSIENT ANALYSIS OF A FULLY-PASSIVE INTEGRAL PWR

  • Lee, Yeon-Gun;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.439-458
    • /
    • 2013
  • REX-10 is a fully-passive small modular reactor in which the coolant flow is driven by natural circulation, the RCS is pressurized by a steam-gas pressurizer, and the decay heat is removed by the PRHRS. To confirm design decisions and analyze the transient responses of an integral PWR such as REX-10, a thermal-hydraulic system code named TAPINS (Thermal-hydraulic Analysis Program for INtegral reactor System) is developed in this study. Based on a one-dimensional four-equation drift-flux model, TAPINS incorporates mathematical models for the core, the helical-coil steam generator, and the steam-gas pressurizer. The system of difference equations derived from the semi-implicit finite-difference scheme is numerically solved by the Newton Block Gauss Seidel (NBGS) method. TAPINS is characterized by applicability to transients with non-equilibrium effects, better prediction of the transient behavior of a pressurizer containing non-condensable gas, and code assessment by using the experimental data from the autonomous integral effect tests in the RTF (REX-10 Test Facility). Details on the hydrodynamic models as well as a part of validation results that reveal the features of TAPINS are presented in this paper.

The annual infiltration distribution caused by wind and stack effects in high-rise residential buildings (외부바람과 연돌효과의 상호작용에 의한 고층주거 건물의 연간 침기량 분포)

  • Park, Ju-Hyun;Yoon, sung-min;Song, Du-Sam;Kim, Yong-Sik
    • Journal of Urban Science
    • /
    • v.8 no.1
    • /
    • pp.25-31
    • /
    • 2019
  • Infiltration affects indoor environmental and air quality and energy consumptions in buildings. Especially, airflow and the infiltration are more remarkable in high-rise buildings due to the air-driving forces (stack and wind effects). Thus, it is important to understand infiltration distributions in high-rise residential buildings. In this study, the weather-driven infiltration is characterized from the viewpoint of interactions between external wind and stack effect in high-rise residential buildings. To calculate accurately the annual infiltration distributions, this study also suggests an airflow and thermal simulation method with a two-step calibration of air-leakage data. The simulated results show (1) how the interaction between stack and wind effects induce infiltration types (outdoor and interzone air infiltration) and (2) how much the interzone air infiltration (being ignored in previous studies) occurs due to the stack effect, as well as the outdoor air infiltration rates.

Prediction the Phase Transformation Time of Binary Alloy System by calculating the Input Energy of Mechanical Alloying (기계적 합금화 투입에너지 계산에 의한 이원합금계의 상변태 시간 예측)

  • Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.107-111
    • /
    • 2019
  • The activation energy to create a phase transformation or for the reaction to move to the next stage in the milling process can be calculated from the slop of the DSC plot, obtained at the various heating rates for mechanically activated Al-Ni alloy systems by using Kissinger's equation. The mechanically activated material has been called "the driven material" as it creates new phases or intermetallic compounds of AlNi in Al-Ni alloy systems. The reaction time for phase transformation by milling can be calculated using the activation energy obtained from the above mentioned method and from the real required energy. The real required energy (activation energy) could be calculated by subtracting the loss energy from the total input energy (calculated input energy from electric motor). The loss energy and real required energy divided by the reaction time are considered the "metabolic energy" and "the effective input energy", respectively. The milling time for phase transformation at other Al-Co alloy systems from the calculated data of Al-Ni systems can be predicted accordingly.

Measurement of fast ion life time using neutron diagnostics and its application to the fast ion instability at ELM suppressed KSTAR plasma by RMP

  • Kwak, Jong-Gu;Woo, M.H.;Rhee, T.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1860-1865
    • /
    • 2019
  • The confinement degradation of the energetic particles during RMP would be a key issue in success of realizing the successful energy production using fusion plasma, because a 3.5 MeV energetic alpha particle should be able to sustain the burning plasma after the ignition. As KSTAR recent results indicate the generation of high-performance plasma(${\beta}_p{\sim}3$), the confinement of the energetic particles is also an important key aspect in neutral beam driven plasma. In general, the measured absolute value of the neutron intensity is generally used for to estimating the confinement time of energetic particles by comparing it with the theoretical value based on transport calculations. However, the availability of, but for its calculation process, many accurate diagnostic data of plasma parameters such as thermal and incident fast ion density, are essential to the calculation process. In this paper, the time evolution of the neutron signal from an He3 counter during the beam blank has permitted to facilitate the estimation of the slowing down time of energetic particles and the method is applied to investigate the fast ion effect on ELM suppressed KSTAR plasma which is heated by high energy deuterium neutral beams.