• Title/Summary/Keyword: Data transfer time

Search Result 1,290, Processing Time 0.029 seconds

Agent with Low-latency Overcoming Technique for Distributed Cluster-based Machine Learning

  • Seo-Yeon, Gu;Seok-Jae, Moon;Byung-Joon, Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.157-163
    • /
    • 2023
  • Recently, as businesses and data types become more complex and diverse, efficient data analysis using machine learning is required. However, since communication in the cloud environment is greatly affected by network latency, data analysis is not smooth if information delay occurs. In this paper, SPT (Safe Proper Time) was applied to the cluster-based machine learning data analysis agent proposed in previous studies to solve this delay problem. SPT is a method of remotely and directly accessing memory to a cluster that processes data between layers, effectively improving data transfer speed and ensuring timeliness and reliability of data transfer.

Exploring the Relationship between Transfer Trips and Land Use (환승통행과 토지이용의 연관성 분석)

  • Lim, Su-yeon;Lee, Hyangsook;Choo, Sangho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.2
    • /
    • pp.1-12
    • /
    • 2016
  • This paper is to analyze characteristics of transfer trips and to identify impacts of land use on them. Using the smart transport card data of Seoul on a weekday in April 2013, we explored general characteristics of the transfer trips such as spatial and temporal distributions, transfer types, and geographical patterns of transfer trips. Then, the multiple regression model for the transfer trips was developed, considering land use as well as socio-economic variables as explanatory ones. For the characteristics of the transfer trips, their ratio to the total trips accounts for 26.7%. Nearly 87% of the trips are one-time transferred, and 64.7% are bus-subway transfer trips. In addition, the transfer trips are more likely to appear nearby subway stations and business facilities. The regression model indicates that land use variables such as the floor areas of business facilities and department stores and mixed land use index significantly positively affect the transfer trips. Our results can be used as basic data for choosing feasible locations of multi-modal transfer centers in urban areas.

The Impacts of Technology Transfer on Productivity Growth of Firms based on Malmquist Productivity Index

  • Han, Jaeseung;Kwon, Youngkwan;Lee, Sang-Yong Tom
    • Asia pacific journal of information systems
    • /
    • v.26 no.4
    • /
    • pp.542-560
    • /
    • 2016
  • This study determines whether or not firms can achieve high productivity growth through external technology acquisition. It also identifies the key factors affecting adopting firms' productivity growth by employing the Malmquist productivity index (MPI) methodology, which features computational ease, low data dependency, and decomposition of productivity growth into technical efficiency change and technical change. Results showed that the effects of productivity growth arising from technology transfer became stronger over time. Moreover, patent transfer guaranteed firms' productivity growth, but no evidence was found that factors such as age and size could increase productivity. Finally, cultural similarity could be another factor conditioning the effectiveness of technology transfer in the productivity of adopting firms.

A Review of Time Series Analysis for Environmental and Ecological Data (환경생태 자료 분석을 위한 시계열 분석 방법 연구)

  • Mo, Hyoung-ho;Cho, Kijong;Shin, Key-Il
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.365-373
    • /
    • 2016
  • Much of the data used in the analysis of environmental ecological data is being obtained over time. If the number of time points is small, the data will not be given enough information, so repeated measurements or multiple survey points data should be used to perform a comprehensive analysis. The method used for that case is longitudinal data analysis or mixed model analysis. However, if the amount of information is sufficient due to the large number of time points, repetitive data are not needed and these data are analyzed using time series analysis technique. In particular, with a large number of data points in the current situation, when we want to predict how each variable affects each other, or what trends will be expected in the future, we should analyze the data using time series analysis techniques. In this study, we introduce univariate time series analysis, intervention time series model, transfer function model, and multivariate time series model and review research papers studied in Korea. We also introduce an error correction model, which can be used to analyze environmental ecological data.

Terahertz Time Domain Spectroscopy, T-Ray Imaging and Wireless Data Transfer Technologies

  • Paek, Mun-Cheol;Kwak, Min-Hwan;Kang, Seung-Beom;Kim, Sung-Il;Ryu, Han-Cheol;Choi, Sang-Kuk;Jeong, Se-Young;Kang, Dae-Won;Jun, Dong-Suk;Kang, Kwang-Yong
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.158-165
    • /
    • 2010
  • This study reviewed terahertz technologies of time domain spectroscopy, T-ray imaging, and high rate wireless data transfer. The main topics of the terahertz research area were investigation of materials and package modules for terahertz wave generation and detection, and setup of the terahertz system for time domain spectroscopy(TDS), T-ray imaging and sub-THz wireless communication. In addition to Poly-GaAs film as a photoconductive switching antenna material, a table-top scale for the THz-TDS/imaging system and terahertz continuous wave(CW) generation systems for sub-THz data transfer and narrow band T-ray imaging were designed. Dielectric properties of ferroelectric BSTO($Ba_xSr_{1-x}TiO_3$) films and chalcogenide glass systems were characterized with the THz-TDS system at the THz frequency range. Package modules for terahertz wave transmitter/receiver(Tx/Rx) photoconductive antenna were developed.

Manchester coding of compressed binary clusters for reducing IoT healthcare device's digital data transfer time (IoT기반 헬스케어 의료기기의 디지털 데이터 전송시간 감소를 위한 압축 바이너리 클러스터의 맨체스터 코딩 전송)

  • Kim, Jung-Hoon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.460-469
    • /
    • 2015
  • This study's aim is for reducing big data transfer time of IoT healthcare devices by modulating digital bits into Manchester code including zero-voltage idle as information for secondary compressed binary cluster's compartment after two step compression of compressing binary data into primary and secondary binary compressed clusters for each binary clusters having compression benefit of 1 bit or 2 bits. Also this study proposed that as department information of compressed binary clusters, inserting idle signal into Manchester code will have benefit of reducing transfer time in case of compressing binary cluster into secondary compressed binary cluster by 2 bits, because in spite of cost of 1 clock idle, another 1 bit benefit can play a role of reducing 1 clock transfer time. Idle signal is also never consecutive because the signal is for compartment information between two adjacent secondary compressed binary cluster. Voltage transition on basic rule of Manchester code is remaining while inserting idle signal, so DC balance can be guaranteed. This study's simulation result said that even compressed binary data by another compression algorithms could be transferred faster by as much as about 12.6 percents if using this method.

Acceleration sensor, and embedded system using location-aware (가속센서를 이용한 위치인식과 임베디드시스템)

  • Roh, Chang-Bae;Na, Won-Shik
    • Journal of Convergence Society for SMB
    • /
    • v.3 no.2
    • /
    • pp.51-56
    • /
    • 2013
  • Real-time processing of sensor data network, is one of the important factors. Each node in the detected data are required to be transmitted within a certain time since the accurate processing is possible. Thus, the data nodes are successfully delivered within a specified time, it is very important to check whether the. Recently more and more accurate real-time embedded systems are reliable and haejyeoseo been able to provide sophisticated services. Because of the inherent complexity of embedded systems in the physical world and the difficulty of predicting the difficulty of a safe design constraints on the runtime violation of system as to cause unexpected causes. Each node data in time detected by the time required to be passed in the appropriate processing is possible because the data transfer time in this paper, the monitoring of the sensor network through a node are allowed to exist within the time range and transmits data to the server Analysis of the data transfer time for checking whether the system was implemented. Implementation of the data transmission time to the process for analyzing and presenting, according to the procedure suggested by the transit time required for analysis a time difference analysis method, a data collection method and a data transmission time and transmission time calculating method presented.

  • PDF

Implementation of Adaptive Transmission Middleware for Video Streaming (비디오 스트리밍을 위한 적응적 전송 미들웨어의 구현)

  • 김영주
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.637-644
    • /
    • 2004
  • This paper proposed and implemented the adaptive transmission middleware for video streaming, which is able to support the adaptive transmission of video data to the fluctuating changes of network environment in the packet-based network and the properties of transmitted video data. The adaptive transmission middleware is made up SR-RTP-based transfer module and TFRC(TCP Friendly Rate Control)-based transfer-rate control module. The SR-RTP-based transfer module supports RTP-based real-time transfer of video data and packet retransmission scheme retransmitting the high-priority packets selectively in the damaged video data to reduce the error induced by the packet loss. Sharing the transmission bandwidth of network with the TCP-based data transfer, the TFRC-based transfer-rate control module controls the transfer rate of video data according to the most allowable transmission bandwidth in the network, so that the transfer rate is controlled adaptively to the fluctuating changes of transmission bandwidth. This paper, for the experiment, applied the adaptive transmission middleware to video streaming in the external Internet environment, and analyzed the effective frame transfer rate and the degree of the streaming jitter to evaluate the performance of packet-loss recovery and adaptive transfer rate control. In the external Internet environment where the packet-loss rate is high a bit, the relatively high streaming performance was showed compared with the case that didn't apply the adaptive transmission middleware.

Design and Implementation of Channel Allocation Module of Synchronous Area in MOST Network (MOST 네트워크의 동기영역 채널 할당 모듈 설계 및 구현)

  • Jang, Si-Woong;Kwak, Gil-Bong;Yu, Yoon-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1397-1402
    • /
    • 2010
  • While MOST is an in-vehicle network which transfers concurrently synchronous data, asynchronous data and control data, it provides high bandwidth synchronous section which can transfer video and audio without buffering. To transfer real time data using synchronous section, connections between source node and sink node, and channel allocation for connections are required. In this paper, we proposed synchronous data transfer method and channel allocation method by constructing MOST network after designing and implementing channel allocation module for using synchronous data section.

An Efficient Algorithm for Big Data Prediction of Pipelining, Concurrency (PCP) and Parallelism based on TSK Fuzzy Model (TSK 퍼지 모델 이용한 효율적인 빅 데이터 PCP 예측 알고리즘)

  • Kim, Jang-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2301-2306
    • /
    • 2015
  • The time to address the exabytes of data has come as the information age accelerates. Big data transfer technology is essential for processing large amounts of data. This paper posits to transfer big data in the optimal conditions by the proposed algorithm for predicting the optimal combination of Pipelining, Concurrency, and Parallelism (PCP), which are major functions of GridFTP. In addition, the author introduced a simple design process of Takagi-Sugeno-Kang (TSK) fuzzy model and designed a model for predicting transfer throughput with optimal combination of Pipelining, Concurrency and Parallelism. Hence, the author evaluated the model of the proposed algorithm and the TSK model to prove the superiority.