The data collected by the In-Situ Decommissioning (ISD) sensors are time-specific, age-specific, and developmental stage-specific. Research has been done on the stream data collected by ISD testbed in the recent few years to seek both frequent episodes and abnormal frequent episodes. Frequent episodes in the data stream have confirmed the daily cycle of the sensor responses and established sequences of different types of sensors, which was verified by the experimental setup of the ISD Sensor Network Test Bed. However, the discovery of abnormal frequent episodes remained a challenge because these abnormal frequent episodes are very small signals and may be buried in the background noise of voltage and current changes. In this work, we proposed Advanced Data Analytics (ADA) methods that are applied to the baseline data to identify frequent episodes and extended our approach by adding more features extracted from the baseline data to discover abnormal frequent episodes, which may lead to the early indicators of ISD system failures. In the study, we have evaluated our approach using the baseline data, and the performance evaluation results show that our approach is able to discover frequent episodes as well as abnormal frequent episodes conveniently.
To find the emerging patterns (EPs) in streaming transaction data, the streaming is first divided into some time windows containing a number of transactions. Itemsets are generated from transactions in each window, and then the emergence of itemsets is evaluated between two windows. In the tilted-time windows model (TTWM), it is assumed that people need support data with finer accuracy from the most recent windows, while accepting coarser accuracy from older windows. Therefore, a limited array's elements are used to maintain all support data in a way that condenses old windows by merging them inside one element. The capacity of elements that accommodates the windows inside is modeled using a particular number sequence. However, in a stream, as new data arrives, the current array updating mechanisms lead to many null elements in the array and cause data incompleteness and inaccuracy problems. Two models derived from TTWM, logarithmic TTWM and Fibonacci windows model, also inherit the same problems. This article proposes a novel push-front Fibonacci windows model as a solution, and experiments are conducted to demonstrate its superiority in finding more EPs compared to other models.
본 연구에서는 상수관망에 설치된 유량, 압력 센서를 통해 취득한 빅데이터에 대해 데이터마이닝 기법을 활용하여 해당 공급권역의 특성을 파악하고 그 정보에 기반하여 상수 공급에 있어서 유의할 점 등을 도출해보고자 하였다. 또한, 상수 사용에 대한 단기 수요예측을 수행하는데 있어서도 통계적 방법인 다중회귀분석과 데이터마이닝의 인공신경망 기법을 비교하여 좀 더 정확한 수요예측을 할 수 있는 모델을 제시해보고자 하였다. 데이터 수집과 테스트를 위하여 지자체 한 군의 소블록 지역을 대상으로 선정하였다. 해당 지역은 가정용 수요 외에도 관공서, 병원 등의 대형 업무용 수요도 일부 존재하고 있는 지역이다. 해당 지역의 센서를 통해 취득되는 연속 발생 데이터를 수집하였다. 이런 방식을 통해 취득된 데이터는 총 2,728건이며 이 중 2,632건은 예측모델을 생성하는데 96건은 예측모델의 예측력을 테스트 하는 데에 활용하였다. 이러한 테스트를 수행한 결과 상수 수요예측에 있어서 인공신경망이 다중회귀분석에 비교하여 더 좋은 예측율을 보였다.
본 논문에서는 장애인의 보행을 지원하는 Smart-Walk 시스템에서 하나의 시스템으로 여러 유형의 장애인을 지원할 수 있도록 하는 유니버설 디자인개념의 데이터베이스 구축방안을 제시한다. 또한, 운행로그를 분석하여 사용자의 사용현황과 이탈비율을 계산함으로써 시스템의 최적운영을 지원하는 방안을 제시한다. 다양한 사용자 유형과 그에 적합한 사용방법들을 데이터베이스에 저장하고 관리함으로써 간단하게 다양한 유형의 사용자들에게 지원할 수 있는 방법은 진정한 유니버설디자인 이념의 실현이라 할 수 있다. 사용자의 운행로그를 데이터웨어하우스 형태로 저장하고 온라인 분석 기법을 적용함으로써 시스템의 최적 운영에 유용한 정보를 실시간으로 추출해 낼 수 있게 된다.
시간의 변화에 따라 사용자의 관심도는 변화한다. 이 논문에서는 유비쿼터스 환경에서 연령, 시기, 계절 등에 따라 변화하는 사용자의 서비스 관심도를 고려하기 위하여 서비스에 대한 관심도를 동적 가중치로 부여하여 사용자에게 적합한 서비스를 추천하기 위한 방법을 제안한다. 사용자에게 제공한 서비스 이력 데이터를 기준으로 시기나 연령에 따른 일반적인 서비스 규칙을 저장하고, 실시간으로 변화하는 서비스의 관심도를 고려한 최신의 서비스 규칙을 지속적으로 추가하여 사용자의 관심 변화를 반영하는 서비스를 제공하기 위한 방법이다. 이를 위해 사용자에게 제공하는 일련의 서비스는 트랜잭션으로 고려하고 서비스는 항목으로 고려하여 서비스의 연관관계를 그래프로 표현하고, 이를 기반으로 빈발 서비스 항목을 발견한다. 발견된 빈발 서비스 항목은 사용자에게 유용한 최신의 정보 서비스를 의미한다.
Musa, Ibrahim Musa Ishag;Lee, Dong-Gyu;Ryu, Keun-Ho
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2008년도 International Symposium on Remote Sensing
/
pp.406-409
/
2008
Clustering data streams has an importance over many applications like sensor networks. Existing hierarchical methods follow a semi fuzzy clustering that yields duplicate clusters. In order to solve the problems, we propose an extended online divisive agglomerative clustering on data streams. It builds a tree-like top-down hierarchy of clusters that evolves with data streams using geometric time frame for snapshots. It is an enhancement of the Online Divisive Agglomerative Clustering (ODAC) with a pruning strategy to avoid duplicate clusters. Our main features are providing update time and memory space which is independent of the number of examples on data streams. It can be utilized for clustering sensor data and network monitoring as well as web click streams.
With the popularization of big data environment, big data have been highlighted as a key information strategy to establish national spatial data infrastructure for a scientific land policy and the extension of the creative economy. Especially interesting from our point of view is the cadastral information is a core national information source that forms the basis of spatial information that leads to people's daily life including the production and consumption of information related to real estate. The purpose of our paper is to suggest the scheme of big data analytics with respect to the articles of cadastral resurvey project in order to approach cadastral information in terms of spatial data integration. As specific research method, the TM (Text Mining) package from R was used to read various formats of news reports as texts, and nouns were extracted by using the KoNLP package. That is, we searched the main keywords regarding cadastral resurvey, performing extraction of compound noun and data mining analysis. And visualization of the results was presented. In addition, new reports related to cadastral resurvey between 2012 and 2014 were searched in newspapers, and nouns were extracted from the searched data for the data mining analysis of cadastral information. Furthermore, the approval rating, reliability, and improvement of rules were presented through correlation analyses among the extracted compound nouns. As a result of the correlation analysis among the most frequently used ones of the extracted nouns, five groups of data consisting of 133 keywords were generated. The most frequently appeared words were "cadastral resurvey," "civil complaint," "dispute," "cadastral survey," "lawsuit," "settlement," "mediation," "discrepant land," and "parcel." In Conclusions, the cadastral resurvey performed in some local governments has been proceeding smoothly as positive results. On the other hands, disputes from owner of land have been provoking a stream of complaints from parcel surveying for the cadastral resurvey. Through such keyword analysis, various public opinion and the types of civil complaints related to the cadastral resurvey project can be identified to prevent them through pre-emptive responses for direct call centre on the cadastral surveying, Electronic civil service and customer counseling, and high quality services about cadastral information can be provided. This study, therefore, provides a stepping stones for developing an account of big data analytics which is able to comprehensively examine and visualize a variety of news report and opinions in cadastral resurvey project promotion. Henceforth, this will contribute to establish the foundation for a framework of the information utilization, enabling scientific decision making with speediness and correctness.
Kang, Woochul;Kang, Joongu;Jang, Eunkyung;Julien, Piere Y.
한국수자원학회:학술대회논문집
/
한국수자원학회 2020년도 학술발표회
/
pp.85-85
/
2020
South Korea experiences few large scale erosion and sedimentation problems, however, there are numerous local sedimentation problems. A reliable and consistent approach to modelling and management for sediment processes are desirable in the country. In this study, field measurements of sediment concentration from 34 alluvial river basins in South Korea were used with the Modified Einstein Procedure (MEP) to determine the total sediment load at the sampling locations. And then the Flow Duration-Sediment Rating Curve (FD-SRC) method was used to estimate the specific degradation for all gauging stations. The specific degradation of most rivers were found to be typically 50-300 tons/㎢·yr. A model tree data mining technique was applied to develop a model for the specific degradation based on various watershed characteristics of each watershed from GIS analysis. The meaningful parameters are: 1) elevation at the middle relative area of the hypsometric curve [m], 2) percentage of wetland and water [%], 3) percentage of urbanized area [%], and 4) Main stream length [km]. The Root Mean Square Error (RMSE) of existing models is in excess of 1,250 tons/㎢·yr and the RMSE of the proposed model with 6 additional validations decreased to 65 tons/㎢·yr. Erosion loss maps from the Revised Universal Soil Loss Equation (RUSLE), satellite images, and aerial photographs were used to delineate the geospatial features affecting erosion and sedimentation. The results of the geospatial analysis clearly shows that the high risk erosion area (hill slopes and construction sites at urbanized area) and sedimentation features (wetlands and agricultural reservoirs). The result of physiographical analysis also indicates that the watershed morphometric characteristic well explain the sediment transport. Sustainable management with the data mining methodologies and geospatial analysis could be helpful to solve various erosion and sedimentation problems under different conditions.
한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
/
pp.49-54
/
2000
Korea Institute of Geology Mining and Materials(KIGAM) has been operating Korean Earthquake Monitoring System(KEMS) to archive the real-time data stream and to determine event parameters (epicenter origin time and magnitude)by the automatic processing and analyst review. To do this KEMS uses the Vindel Hue's velocity model which was derived from Wonju KSRS data. Because KIGAM now receives the real-time data from many stations including Wonju KSRS Cholwon seismo-acoustic array Uljin Wolsung Youngkwang Taejon Seoul Kimcheon Taegu etc. the proper velocity model should be established around the Korean peninsula, In this study P were velocity structures was derived from VELEST program using 69 events among the 835 events determined by KEMS in 1999 which were recorded by at least 5 stations. General trend of velocity structure was similar to Sang Jo Kim's model but velocity value was low in crust and high in upper mantle. Due to the sensitivity of inversion results to the initial input model the artificial short and blast data might be added.
최근 네트워크 기술 발전과 함께 IoT 및 소셜 네트워크 서비스의 활성화로 인해 많은 그래프 스트림 데이터가 생성되고 있다. 본 논문에서는 압축률 및 압축 시간에 대해 중점적으로 연구되던 기존의 압축 기법에 그래프 마이닝을 적용하여 스트림 그래프 환경을 함께 고려한 그래프 압축 기술을 제안한다. 또한, 최신 패턴을 유지하여 실시간으로 변화하는 스트림 그래프에서 압축 효율 및 처리속도를 향상시킨다. 본 논문에서는 그래프 스트림 처리를 위한 점진적 빈발 패턴 기반 압축 기법을 제안하였다. 제안하는 기법의 우수성을 보이기 위해 압축률과 처리시간을 기존기법과 비교하여 성능평가를 수행한다. 제안하는 기법은 그래프 데이터의 크기가 커질 때 중복되는 데이터가 많아져 기존 기법보다 빠른 처리속도를 보인다. 따라서, 빠른 처리가 요구되는 스트림 환경에서 제안하는 기법을 활용할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.