연관 규칙 탐사는 데이터베이스를 분석하여 잠재되어 있는 지식을 발견하기 위한 기법으로 스트림 데이터 시스템에서 연관 규칙 탐사에 대한 연구가 활발하게 진행되고 있다. 그러나 대부분의 연구들은 센서에서 수집되는 단일 스트림 데이터에 관한 것이며 다차원 스트림 데이터간의 연관 정보는 간과하고 있다. 본 논문에서는 다차원 스트림 데이터간의 연관 규칙을 탐사할 수 있는 AR-MS 방법을 제안한다. AR-MS 방법은 한 번의 데이터 스캔으로 연관 규칙 탐사에 필요한 요약 정보를 구축함으로써 스트림 데이터의 특성을 반영하며, 자주 발생하지는 않지만 특정 이벤트와 빈번하게 발생하는 의미 있는 희소 항목 집합에 대한 연관 규칙을 탐사할 수 있다. 또한 AR-MS 방법은 구축된 요약 정보를 사용하여 다차원 스트림 데이터간의 최대 빈발 항목 집합에 대한 연관 규칙도 탐사한다. 그리고 다양한 실험을 통하여 제안하는 방법이 기존의 방법들에 비하여 우수함을 확인하였다.
유비쿼터스 환경에서 상황정보 인식 분야를 연구하면서 가장 밑바탕에서 기초가 될 수 있는 것은 인터넷 기술과 XML(Extensible Markup Language)이다. 인터넷을 통한 통신에서 XML 데이터의 사용이 일반화되고 있으며 데이터의 형태는 연속적이다. 그리고 XML 스트림 데이터에 대한 질의를 처리하기 위한 방안들이 제시되고 있다. 이 논문에서는 스트림 데이터에 대한 질의처리를 효율적으로 수행하기 위한 기반연구로써 XML을 레이블의 순서화된 트리로 모델링하여 온라인 환경에서 빈발한 구조를 추출하는 마이닝 방법을 제안한다. 즉, 지속적으로 입력되는 XML 데이터의 구조를 트리로 모델링하고 각각의 트리를 하나의 트리 집합의 구조로 표현하여 현재 윈도우 시점에서 빈발한 구조를 정확하고 빠르게 추출하는 방법을 제시한다. 제시하는 방법은 XML의 질의 처리 및 색인 구성의 기초 자료로 활용될 수 있다.
Recently, with the advances in sensor techniques and net work computing, Ubiquitous Sensor Network (USN) has been received a lot of attentions from various communities. The sensor nodes distributed in the sensor network tend to continuously generate a large amount of data, which is called stream data. Sensor stream data arrives in an online manner so that it is characterized as high-speed, real-time and unbounded and it requires fast data processing to get the up-to-date results. The data stream has many application domains such as traffic analysis, physical distribution, U-healthcare and so on. Therefore, there is an overwhelming need of a USN middleware for processing such online stream data to provide corresponding services to diverse applications. In this paper, we propose a novel USN middleware which can provide users both context-aware service and meaningful sequential patterns. Our proposed USN middleware is mainly focused on location based applications which use stream location data. We also show the implementation of our proposed USN middleware. By using the proposed USN middleware, we can save the developing cost of providing context aware services and stream sequential patterns mainly in location based applications.
기존의 데이터 마이닝 방법들은 기본적으로 지식 발견의 대상이 되는 데이터 집합이 마이닝 작업 시작 이전에 명확히 정의되는 것으로 가정하며 이러한 가정은 고정적으로 정의된 특정 데이터 집합에 내재된 정보 추출이 데이터 마이닝의 목적이 될 때 유효하다. 또한, 기존의 데이터 마이닝 방법들은 대용량의 데이터 집합에 대한 마이닝 결과를 얻는데 있어서 상당한 처리 시간을 요구한다. 따라서, 새로운 트랜잭션 데이터가 지속적으로 추가되는 데이터 스트림에서 추가된 트랜잭션의 정보들을 포함하는 최신의 마이닝 결과를 최대한 빠른 시간 안에 얻기를 기대하는 실시간 처리 환경에서는 기존의 데이터 마이닝 방법을 적용하는 것이 거의 불가능하다. 이러한 목적에 부합하기 위해서 본 논문에서는 새로운 데이터 마이닝 개념인 개방 데이터 마이닝을 제안한다. 개방 데이터 마이닝에서는 새로운 트랜잭션이 발생함에 따라 이전에 발생한 트랜잭션들에 대한 마이닝 결과가 새롭게 갱신되며 따라서 확장된 전체 트랜잭션 집합에 대한 마이닝 결과를 빠르게 얻을 수 있다. 이러한 방법을 효과적으로 구현하기 위해서는 새롭게 출현한 항목에 대한 지연추가와 이전 데이터 집합에 출현한 항목들 중에서 중요하지 않는 항목에 대한 전지작업이 병행되어야 한다. 논문에서 제안하는 알고리즘은 알고리즘의 특성을 파악하기 위한 일련의 다양한 실험을 통해서 검증된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권4호
/
pp.938-958
/
2024
Unsupervised Video Object Segmentation (UVOS) is a highly challenging problem in computer vision as the annotation of the target object in the testing video is unknown at all. The main difficulty is to effectively handle the complicated and changeable motion state of the target object and the confusion of similar background objects in video sequence. In this paper, we propose a novel deep Dual-stream Co-enhanced Network (DC-Net) for UVOS via bidirectional motion cues refinement and multi-level feature aggregation, which can fully take advantage of motion cues and effectively integrate different level features to produce high-quality segmentation mask. DC-Net is a dual-stream architecture where the two streams are co-enhanced by each other. One is a motion stream with a Motion-cues Refine Module (MRM), which learns from bidirectional optical flow images and produces fine-grained and complete distinctive motion saliency map, and the other is an appearance stream with a Multi-level Feature Aggregation Module (MFAM) and a Context Attention Module (CAM) which are designed to integrate the different level features effectively. Specifically, the motion saliency map obtained by the motion stream is fused with each stage of the decoder in the appearance stream to improve the segmentation, and in turn the segmentation loss in the appearance stream feeds back into the motion stream to enhance the motion refinement. Experimental results on three datasets (Davis2016, VideoSD, SegTrack-v2) demonstrate that DC-Net has achieved comparable results with some state-of-the-art methods.
데이터 스트림 마이닝에서 대부분의 정보 중요성 차별화 기법들은 오래된 정보에 비해 최근에 발생한 정보에 보다 큰 가중치를 부여한다. 하지만, 오래 전에 발생한 정보 중에도 매우 중요한 의미를 갖는 정보들이 존재하기도 한다. 예를 들어, 도소매 상점에서 과거에는 단골 고객이었으나 일정 기간 동안 방문하지 않은 경우, 해당 고객의 구매 기록 등이 포함된 오래된 정보들은 집중 마케팅을 통한 판매실적 증대에 매우 중요한 자료가 될 수 있다. 본 논문에서는 하나의 데이터 스트림에서 최근에는 자주 발생되지 않으나 과거에 빈번히 발생했던 것으로서 관심도가 큰 항목집합을 의미하는 고관심 정보 HAI(Highly Attention Itemsets)를 정의하고, 이를 효율적으로 탐색하기 위한 양방향 감쇠 기법 및 데이터 스트림 마이닝 기법을 제안한다.
국내외 TV방송의 디지털 전환 프로젝트가 본격적으로 진행되고 있다. 디지털 방송 서비스는 다매체, 다채널을 통한 방송 프로그램의 증가와 양방향 TV방송 서비스로 인해 사용자에게 다양한 방송 프로그램의 선택과 개인/커뮤니티별 맞춤형 시청 기회를 제공함으로써 새로운 방송서비스 환경을 필요로 한다. 본 논문에서는 TV-Anytime 영상 메타데이터에 대한 데이터 스트림 마이닝 기법을 이용하여 사용자의 시청 상황을 포함한 시청 패턴을 분석함으로써 개인/커뮤니티 시청 패턴 프로파일 및 시청 선호도 연관규칙 생성 기법을 적용한 개인/커뮤니티 맞춤형 Digital TV 시스템 을 제안한다. 또한, 임베디드 시스템 기반의 사용자 인터페이스를 구현하여 개인/커뮤니티 사용자들에게 적절한 추천 프로그램을 제공하고, 시청 프로그램 정보에 따른 시청 상황을 자동으로 제어하는 기능을 포함한다. 또한, 스마트폰 기반의 채널 추천 시스템을 구현하여 프로파일의 활용도를 증가시켰으며, 실험을 통하여 본 논문에서 제안하는 방법의 효율성을 검증한다.
다양한 센서의 개발과 센서 네트워크 구축으로 인해 특정 공간의 환경 데이터를 수집할 수 있다. 보다 유용한 정보 및 지식의 발견을 위하여 데이터 마이닝(Data mining) 기법이 활용되는 연구들이 소개되었다. 본 연구에서는 이와 같은 데이터 마이닝 기법의 효율성 증대를 위하여 센서 네트워크로부터의 데이터 스트림의 전처리 과정(Preprocessing)을 수행하고자 한다. 제안하는 센서 스트림 데이터의 전처리 과정은 i) 세션확인(Session identification)과 ii) 오류검증(Error detection) 문제를 해결하고자 한다. 특히, 이를 위해 각센서 장비로부터 수집되는 데이터의 의미(Semantics)를 표현하고 있는 온톨로지(Ontology)를 적용한다. 본 연구 결과의 성능 평가를 위하여 센서 네트워크 테스팅 환경을 교내에 설치하였으며 30여일 동안 수집된 데이터를 이용하여 시뮬레이션을 실행하였다.
Classification in biomedical applications is an important task that predicts or classifies an outcome based on a given set of input variables such as diagnostic tests or the symptoms of a patient. Traditionally the classification algorithms would have to digest a stationary set of historical data in order to train up a decision-tree model and the learned model could then be used for testing new samples. However, a new breed of classification called stream-based classification can handle continuous data streams, which are ever evolving, unbound, and unstructured, for instance--biosignal live feeds. These emerging algorithms can potentially be used for real-time classification over biosignal data streams like EEG and ECG, etc. This paper presents a pioneer effort that studies the feasibility of classification algorithms for analyzing biosignals in the forms of infinite data streams. First, a performance comparison is made between traditional and stream-based classification. The results show that accuracy declines intermittently for traditional classification due to the requirement of model re-learning as new data arrives. Second, we show by a simulation that biosignal data streams can be processed with a satisfactory level of performance in terms of accuracy, memory requirement, and speed, by using a collection of stream-mining algorithms called Optimized Very Fast Decision Trees. The algorithms can effectively serve as a corner-stone technology for real-time classification in future biomedical applications.
Communications for Statistical Applications and Methods
/
제8권3호
/
pp.831-840
/
2001
In this study, We introduce the process of web usage mining, which has lately attracted considerable attention with the fast diffusion of world wide web, and explain the web log data, which Is the main subject of web usage mining. Also, we illustrate some real examples of analysis for web log data and look into practical application of web usage mining for eCRM.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.