• Title/Summary/Keyword: Data simulator

Search Result 1,402, Processing Time 0.027 seconds

A Study on an Efficient VDES Gain Control Method Conforming to the International Standard (국제 표준 규격에 부합하는 효율적인 VDES 이득제어 방안 연구)

  • Yong-Duk Kim;Min-Young Hwang;Won-Yong Kim;Jeong-Hyun Kim;Jin-Ho Yoo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.339-343
    • /
    • 2022
  • In this study, a method for simplifying the structure of the VDES RF receiver, and the gain control method of the receiver to comply with the international standard in this structure was described. The input level of the wanted signal and unwanted signal to the receiver was defined, and when the two signals were input, the saturation state at the ADC was checked at the receiver output. As a result of the simulation by the circuit simulator, it was satisfied that the output power of the receiver was in the SFDR region of ADC with respect to the adjacent channel interference ratio, intermodulation, and blocking level. Through this study, it was found that the structure of th proposed RF receiver conforms to the international standard.

  • PDF

Error Rate and Flight Characteristics of Rotary-Wing Aircraft Pilots Under Low Visibility Conditions (저시정 조건에서 회전익 항공기 조종사 에러 발생율 및 비행특성)

  • Se-Hoon Yim;Young Jin Cho
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.60-67
    • /
    • 2024
  • The majority of civil aviation accidents are caused by human factors, and especially for rotary-wing aircraft, accidents often occur in situations where pilots unexpectedly or unintentionally enter into instrument meteorological conditions (IIMC). This research analyzed the error rates of rotary-wing aircraft pilots under low visibility conditions from various angles to gain insights into flight characteristics and to explore measures to reduce accidents in IIMC situations. The occurrence rate of errors by pilots under low visibility conditions was examined using a flight simulator equipped with motion, with 65 pilots participating in the experiment. Flight data obtained through the experiment were used to aggregate and analyze the number of errors under various conditions, such as reductions in flight visibility, the presence or absence of spatial disorientation, and the pilot's qualifications. The analysis revealed peculiarities in flight characteristics under various conditions, and significant differences were found in the rate of error occurrence according to the pilot's qualification level, possession of instrument flight rules (IFR) qualifications, and during different phases of flight. The results of this research are expected to contribute significantly to the prevention of aircraft accidents in IIMC situations by improving pilot education and training programs.

Comparing State Representation Techniques for Reinforcement Learning in Autonomous Driving (자율주행 차량 시뮬레이션에서의 강화학습을 위한 상태표현 성능 비교)

  • Jihwan Ahn;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.109-123
    • /
    • 2024
  • Research into vision-based end-to-end autonomous driving systems utilizing deep learning and reinforcement learning has been steadily increasing. These systems typically encode continuous and high-dimensional vehicle states, such as location, velocity, orientation, and sensor data, into latent features, which are then decoded into a vehicular control policy. The complexity of urban driving environments necessitates the use of state representation learning through networks like Variational Autoencoders (VAEs) or Convolutional Neural Networks (CNNs). This paper analyzes the impact of different image state encoding methods on reinforcement learning performance in autonomous driving. Experiments were conducted in the CARLA simulator using RGB images and semantically segmented images captured by the vehicle's front camera. These images were encoded using VAE and Vision Transformer (ViT) networks. The study examines how these networks influence the agents' learning outcomes and experimentally demonstrates the role of each state representation technique in enhancing the learning efficiency and decision- making capabilities of autonomous driving systems.

Comparison of using CBCT with CT Simulator for Radiation dose of Treatment Planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Kim, Dae-Young;Choi, Ji-Won;Cho, Jung-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.742-749
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

Comparison of using CBCT with CT simulator for radiation dose of treatment planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Cho, jung-keun;Kim, dae-young;Han, tae-jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1159-1166
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

  • PDF

System Development and IC Implementation of High-quality and High-performance Image Downscaler Using 2-D Phase-correction Digital Filters (2차원 위상 교정 디지털 필터를 이용한 고성능/고화질의 영상 축소기 시스템 개발 및 IC 구현)

  • 강봉순;이영호;이봉근
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.93-101
    • /
    • 2001
  • In this paper, we propose an image downscaler used in multimedia video applications, such as DTV, TV-PIP, PC-video, camcorder, videophone and so on. The proposed image downscaler provides a scaled image of high-quality and high-performance. This paper will explain the scaling theory using two-dimensional digital filters. It is the method that removes an aliasing noise and decreases the hardware complexity, compared with Pixel-drop and Upsamling. Also, this paper will prove it improves scaling precisians and decreases the loss of data, compared with the Scaler32, the Bt829 of Brooktree, and the SAA7114H of Philips. The proposed downscaler consists of the following four blocks: line memory, vertical scaler, horizontal scaler, and FIFO memory. In order to reduce the hardware complexity, the using digital filters are implemented by the multiplexer-adder type scheme and their all the coefficients can be simply implemented by using shifters and adders. It also decreases the loss of high frequency data because it provides the wider BW of 6MHz as adding the compensation filter. The proposed downscaler is modeled by using the Verilog-HDL and the model is verified by using the Cadence simulator. After the verification is done, the model is synthesized into gates by using the Synopsys. The synthesized downscaler is Placed and routed by the Mentor with the IDEC-C632 0.65${\mu}{\textrm}{m}$ library for further IC implementation. The IC master is fixed in size by 4,500${\mu}{\textrm}{m}$$\times$4,500${\mu}{\textrm}{m}$. The active layout size of the proposed downscaler is 2,528${\mu}{\textrm}{m}$$\times$3,237${\mu}{\textrm}{m}$.

  • PDF

Cache Performance Analysis of Multiprocessor Systems for OLTP Applications based on a Memory-Resident DBMS (메모리 상주 DBMS 기반의 OLTP 응용을 위한 다중프로세서 시스템 캐쉬 성능 분석)

  • Chung, Yong-Wha;Hahn, Woo-Jong;Yoon, Suk-Han;Park, Jin-Won;Lee, Kang-Woo;Kim, Yang-Woo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.4
    • /
    • pp.383-392
    • /
    • 2000
  • Currently, multiprocessors are evaluated almost exclusively with scientific applications. Commercial applications are rarely explored because it is difficult to obtain the source codes of commercial DBMS. Even when the source code is available, such as for POSTGRES, understanding the source code enough to perform detailed meaningful performance evaluations is a daunting task for computer architects.To evaluate multiprocessors with commercial applications, we have developed our own DBMS, called EZDB. EZDB is a parallelized DBMS, loosely inspired from POSTGRES, and running on top of a software architecture simulator. It is capable of executing parallel programs written in SQL. Contrary to POSTGRES, EZDB is not intended as a prototype for a production-quality DBMS. Its purpose is to easily run and evaluate the performance of commercial applications on multiprocessor architectures. To illustrate the usefulness of EZDB, we showed the cache performance data collected for the TPC-B benchmark on a shared-memory multiprocessor. The simulation results showed that the data structures exhibited unique sharing characteristics and that their locality properties and working sets were very different from those in scientific applications.

  • PDF

Improvement of Residual Delay Compensation Algorithm of KJJVC (한일상관기의 잔차 지연 보정 알고리즘의 개선)

  • Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Oh, Chung-Sik;Jung, Jin-Seung;Chung, Dong-Kyu;Oyama, Tomoaki;Kawaguchi, Noriyuki;Kobayashi, Hideyuki;Kawakami, Kazuyuki;Ozeki, Kensuke;Onuki, Hirohumi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.136-146
    • /
    • 2013
  • In this paper, the residual delay compensation algorithm is proposed for FX-type KJJVC. In case of initial version as that design algorithm of KJJVC, the integer calculation and the cos/sin table for the phase compensation coefficient were introduced in order to speed up of calculation. The mismatch between data timing and residual delay phase and also between bit-jump and residual delay phase were found and fixed. In final design of KJJVC residual delay compensation algorithm, the initialization problem on the rotation memory of residual delay compensation was found when the residual delay compensated value was applied to FFT-segment, and this problem is also fixed by modifying the FPGA code. Using the proposed residual delay compensation algorithm, the band shape of cross power spectrum becomes flat, which means there is no significant loss over the whole bandwidth. To verify the effectiveness of proposed residual delay compensation algorithm, we conducted the correlation experiments for real observation data using the simulator and KJJVC. We confirmed that the designed residual delay compensation algorithm is well applied in KJJVC, and the signal to noise ratio increases by about 8%.

QoS improving method of Smart Grid Application using WMN based IEEE 802.11s (IEEE 802.11s기반 WMN을 사용한 Smart Grid Application의 QoS 성능향상 방안 연구)

  • Im, Eun Hye;Jung, Whoi Jin;Kim, Young Hyun;Kim, Byung Chul;Lee, Jae Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.11-23
    • /
    • 2014
  • Wireless Mesh Network(WMN) has drawn much attention due to easy deployment and good scalability. Recently, major power utilities have been focusing on R&D to apply WMN technology in Smart Grid Network. Smart Grid is an intelligent electrical power network that can maximize energy efficiency through bidirectional communication between utility providers and customers with ICT(Information Communication Technology). It is necessary to guarantee QoS of some important data in Smart Grid system such as real-time data delivery. In this paper, we suggest QoS enhancement method for WMN based Smart Grid system using IEEE 802.11s. We analyze Smart Grid Application characteristics and apply IEEE 802.11s WMN scheme for Smart Grid in domestic power communication system. Performance evaluation is progressed using NS-2 simulator implementing IEEE 802.11s. The simulation results show that the QoS enhancement scheme can guarantee stable bandwidth irrespective of traffic condition due to IEEE 802.11s reservation mechanism.

Study on the Variation of Driver's Biosignals According to the Color Temperature of Vehicle Interior Mood Lighting (자동차 실내 무드조명의 색온도에 따른 운전자의 생체신호 변화)

  • Kim, Kyu-Beom;Jo, Hyung-Seok;Kim, Young-Jung;Min, Byung-Chan
    • Science of Emotion and Sensibility
    • /
    • v.23 no.2
    • /
    • pp.3-12
    • /
    • 2020
  • The purpose of this work is to suggest the optimal color temperature, which induces a sense of comfort for autonomous vehicle users through the analysis of biosignal using electroencephalography (EEG) and photoplethysmography (PPG). To achieve this purpose, we applied lighting with a color temperature of 3000 K, 4000 K, 5000 K, and 6000 K to the autonomous driving environment. We experimented in a laboratory equipped with a graphic driving simulator. The experimental procedure is as follows: 1) stabilization (5 min). 2) Uchida-Kraepelin test (3 min). 3) Automatic driving + lighting (3 min). This procedure was repeated four times under different color temperatures. We performed frequency analysis on a collected time-series data and calculated the power value for each frequency band through power spectrum analysis. In the case of EEG, we analyzed α- and β-waves, which are indicators of stability and arousal, respectively. In the case of PPG, we analyzed the sympathetic nervous system activity. To reduce deviations between the subjects, we normalized the data before analysis. The result of the first analysis revealed that α-wave increased only at 5000 K, while the β-wave increased at almost all color temperatures. In addition, in the case of PPG, sympathetic nervous system activity (SNSA) increased under driving conditions. The result of the second analysis revealed that the difference between β-wave and SNSA is insignificant. In conclusion, the increase in α-waves showed that EEG was most stable at 5000 K. The results of this study can be applied to the upcoming autonomous driving era to induce high driver satisfaction. Furthermore, this approach could eventually lead to the acceptance of autonomous vehicles by suggesting a positive effect of autonomous driving.