• 제목/요약/키워드: Data sensing-control

검색결과 498건 처리시간 0.021초

In silico analysis of candidate genes involved in light sensing and signal transduction pathways in soybean

  • Quecini, V.;Zucchi, M.I.;Pinheiro, J.B.;Vello, N.A.
    • Plant Biotechnology Reports
    • /
    • 제2권1호
    • /
    • pp.59-73
    • /
    • 2008
  • Several aspects of photoperception and light signal transduction have been elucidated by studies with model plants. However, the information available for economically important crops, such as Fabaceae species, is scarce. In order to incorporate the existing genomic tools into a strategy to advance soybean research, we have investigated publicly available expressed sequence tag (EST) sequence databases in order to identify Glycine max sequences related to genes involved in light-regulated developmental control in model plants. Approximately 38,000 sequences from open-access databases were investigated, and all bona fide and putative photoreceptor gene families were found in soybean sequence databases. We have identified G. max orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses, although some important Arabidopsis phytochrome-signaling components are absent. Moreover, soybean and Arabidopsis genefamily homologs appear to have undergone a distinct expansion process in some cases. We propose a working model of light perception, signal transduction and response-eliciting in G. max, based on the identified key components from Arabidopsis. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate several aspects of plant physiology and metabolism.

일반 구조형 관측기를 이용한 소각장 SCR 시스템의 Inlet NOx 추정에 관한 연구 (A Study on the Inlet NOx Estimation of SCR System in a Refuse Incineration Plant by Using General Structured Observer)

  • 이충환;김인규;김환성;김상봉
    • 한국정밀공학회지
    • /
    • 제18권1호
    • /
    • pp.123-128
    • /
    • 2001
  • The function of SCR system in refuse incineration plant is to reduce the harmful combustion gases especially NOx which make serious environmental pollution. The SCR system normally have a NOx measurement system such as inlet NOx analyzer and outlet T.M.S.(Tele Monitoring System) to control the outlet NOx in stack. The NOx measurement system is very important, however there are frequently happened sensing problems and it need maintenance periodically. In this paper, we propose an estimation method of inlet NOx of SCR system by using general structured observer. The inlet NOx is considered as an input disturbance and it is modelled by applying FFT method in frequency domains. Through the design of general structured observer, the outlet NOx can be estimated by using observation error between real outlet NOx and estimated outlet NOx. The effectiveness of the proposed method is shown by comparing to a measured inlet NOx data.

  • PDF

Electromagnetic energy harvesting from structural vibrations during earthquakes

  • Shen, Wenai;Zhu, Songye;Zhu, Hongping;Xu, You-lin
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.449-470
    • /
    • 2016
  • Energy harvesting is an emerging technique that extracts energy from surrounding environments to power low-power devices. For example, it can potentially provide sustainable energy for wireless sensing networks (WSNs) or structural control systems in civil engineering applications. This paper presents a comprehensive study on harvesting energy from earthquake-induced structural vibrations, which is typically of low frequency, to power WSNs. A macroscale pendulum-type electromagnetic harvester (MPEH) is proposed, analyzed and experimentally validated. The presented predictive model describes output power dependence with mass, efficiency and the power spectral density of base acceleration, providing a simple tool to estimate harvested energy. A series of shaking table tests in which a single-storey steel frame model equipped with a MPEH has been carried out under earthquake excitations. Three types of energy harvesting circuits, namely, a resistor circuit, a standard energy harvesting circuit (SEHC) and a voltage-mode controlled buck-boost converter were used for comparative study. In ideal cases, i.e., resistor circuit cases, the maximum electric energy of 8.72 J was harvested with the efficiency of 35.3%. In practical cases, the maximum electric energy of 4.67 J was extracted via the buck-boost converter under the same conditions. The predictive model on output power and harvested energy has been validated by the test data.

Development of a low-cost multifunctional wireless impedance sensor node

  • Min, Jiyoung;Park, Seunghee;Yun, Chung-Bang;Song, Byunghun
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.689-709
    • /
    • 2010
  • In this paper, a low cost, low power but multifunctional wireless sensor node is presented for the impedance-based SHM using piezoelectric sensors. Firstly, a miniaturized impedance measuring chip device is utilized for low cost and low power structural excitation/sensing. Then, structural damage detection/sensor self-diagnosis algorithms are embedded on the on-board microcontroller. This sensor node uses the power harvested from the solar energy to measure and analyze the impedance data. Simultaneously it monitors temperature on the structure near the piezoelectric sensor and battery power consumption. The wireless sensor node is based on the TinyOS platform for operation, and users can take MATLAB$^{(R)}$ interface for the control of the sensor node through serial communication. In order to validate the performance of this multifunctional wireless impedance sensor node, a series of experimental studies have been carried out for detecting loose bolts and crack damages on lab-scale steel structural members as well as on real steel bridge and building structures. It has been found that the proposed sensor nodes can be effectively used for local wireless health monitoring of structural components and for constructing a low-cost and multifunctional SHM system as "place and forget" wireless sensors.

Forest Fire Risk Zonation in Madi Khola Watershed, Nepal

  • Jeetendra Gautam
    • Journal of Forest and Environmental Science
    • /
    • 제40권1호
    • /
    • pp.24-34
    • /
    • 2024
  • Fire, being primarily a natural phenomenon, is impossible to control, although it is feasible to map the forest fire risk zone, minimizing the frequency of fires. The spread of a fire starting in any stand in a forest can be predicted, given the burning conditions. The natural cover of the land and the safety of the population may be threatened by the spread of forest fires; thus, the prevention of fire damage requires early discovery. Satellite data and geographic information system (GIS) can be used effectively to combine different forest-fire-causing factors for mapping the forest fire risk zone. This study mainly focuses on mapping forest fire risk in the Madikhola watershed. The primary causes of forest fires appear to be human negligence, uncontrolled fire in nearby forests and agricultural regions, and fire for pastoral purposes which were used to evaluate and assign risk values to the mapping process. The majority of fires, according to MODIS events, occurred from December to April, with March recording the highest occurrences. The Risk Zonation Map, which was prepared using LULC, Forest Type, Slope, Aspect, Elevation, Road Proximity, and Proximity to Water Bodies, showed that a High Fire Risk Zone comprised 29% of the Total Watershed Area, followed by a Moderate Risk Zone, covering 37% of the total area. The derived map products are helpful to local forest managers to minimize fire risks within the forests and take proper responses when fires break out. This study further recommends including the fuel factor and other fire-contributing factors to derive a higher resolution of the fire risk map.

무선 센서 네트워크에서 신뢰성 있는 데이터 전송을 위한 혼잡 탐지와 회피 (Congestion Detection and Avoidance for Reliable Data Transmission in Wireless Sensor Networks)

  • 박홍진;장재복
    • 한국항행학회논문지
    • /
    • 제14권3호
    • /
    • pp.343-350
    • /
    • 2010
  • 무선 센서 네트워크는 소형의 수많은 마이크로 센서 노드들이 모여서 정보를 주고받는 이벤트 기반 시스템이다. 이벤트가 발생하면 수많은 센서 노드가 정보를 센싱하여 싱크 노드로 전송하기 때문에 기존의 유선 네트워크에 비해 혼잡이 쉽게 발생될 수 있다. 현재 인터넷 전송 프로토콜은 TCP/UDP이나 이벤트 기반의 무선 센서 네트워크에서는 적합하지 않다. 무선 센서 네트워크에서 신뢰성 있는 데이터 전송을 위해 ESRT, STCP, CODA 등이 연구되고 있다. 이들의 기법은 지역 버퍼나 채널 부하 중심으로 혼잡을 탐지하고 있다. 혼잡 발생시 주로 브로드캐스팅을 이용하여 혼잡을 회피하는 방식을 사용한다. 본 논문에서 제안하는 방식은 지역 버퍼와 채널 부하 정보를 혼합하여 혼잡을 탑지하며, 혼잡 발생 시 브로드캐스팅 횟수를 줄이기 위해, 버퍼를 3가지 상태로 구분하여 혼잡이 발생되기 전에 채널 부하가 많은 노도에게 혼잡 제어에 대한 메시지를 전송시킨다. 이에 따라 네트워크의 부하를 줄일 수 있는 장점이 있다.

A Study on Environmental Micro-Dust Level Detection and Remote Monitoring of Outdoor Facilities

  • Kim, Seung Kyun;Mariappan, Vinayagam;Cha, Jae Sang
    • International journal of advanced smart convergence
    • /
    • 제9권1호
    • /
    • pp.63-69
    • /
    • 2020
  • The rapid development in modern industrialization pollutant the water and atmospheric air across the globe that have a major impact on the human and livings health. In worldwide, every country government increasing the importance to improve the outdoor air pollution monitoring and control to provide quality of life and prevent the citizens and livings life from hazard disease. We proposed the environmental dust level detection method for outdoor facilities using sensor fusion technology to measure precise micro-dust level and monitor in realtime. In this proposed approach use the camera sensor and commercial dust level sensor data to predict the micro-dust level with data fusion method. The camera sensor based dust level detection uses the optical flow based machine learning method to detect the dust level and then fused with commercial dust level sensor data to predict the precise micro-dust level of the outdoor facilities and send the dust level informations to the outdoor air pollution monitoring system. The proposed method implemented on raspberry pi based open-source hardware with Internet-of-Things (IoT) framework and evaluated the performance of the system in realtime. The experimental results confirm that the proposed micro-dust level detection is precise and reliable in sensing the air dust and pollution, which helps to indicate the change in the air pollution more precisely than the commercial sensor based method in some extent.

DESIGN OF CAMERA CONTROLLER FOR HIGH RESOLUTION SPACE-BORN CAMERA SYSTEM

  • Heo, Haeng-Pal;Kong, Jong-Pil;Kim, Young-Sun;Park, Jong-Euk;Yong, Sang-Soon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.130-133
    • /
    • 2007
  • In order to get high quality and high resolution image data from the space-borne camera system, the image chain from the sensor to the user in the ground-station need to be designed and controlled with extreme care. The behavior of the camera system needs to be controlled by ground commands to support on-orbit calibration and to adjust imaging parameters and to perform early stage on-orbit image correction, like gain and offset control, non-uniformity correction, etc. The operation status including the temperature of the sensor needs to be transferred to the ground-station. The preparation time of the camera system for imaging with specific parameters should be minimized. The camera controller needs to synchronize the operation of cameras for every channel and for every spectral band. Detail timing information of the image data needs to be provided for image data correction at ground-station. In this paper, the design of the camera controller for the AEISS on KOMPSAT-3 will be introduced. It will be described how the image chain is controlled and which imaging parameters are to be adjusted The camera controller will have software for the flexible operation of the camera by the ground-station operators and it can be reconfigured by ground commands. A simple concept of the camera operations and the design of the camera controller, not only with hardware but also with controller software are to be introduced in this paper.

  • PDF

위성영상정보를 이용한 강우유출 해석에 관한 연구 (A Study on the Rainfall-Runoff Analysis of Using Satellite Image)

  • 박영기;이증석;박정규
    • 한국환경과학회지
    • /
    • 제19권1호
    • /
    • pp.115-124
    • /
    • 2010
  • Urban watershed can be found in the visible changes in technology, the most realistic satellite images is to use the data. Satellite image data on the indicators for progress on the nature of the change of land use is consistent and repetitive information, regular observation makes possible the detailed analysis of space-time. These remote sensing techniques and the type of course and, by using the time series history, the past, the dynamic model and the randomized prediction methodology for the conversion process if the city and river basin cooperation of the space changes effectively will be able to extrapolate. For each of the main changes in river flow, depending on the area of urbanization as determined according to reproduce the duration of the relationship between the urbanization of the area and runoff can be represented as a linear polynomial expression was, if a linear expression in the two fast slew rate of 0.858 to 0.861 showed up, and fast slew rate of 0.934 to 0.974 for the polynomial are reported. Change of land use changes in the watershed of the flow is one of the most affecting elements. Therefore, changes in land use of the correct classification of rivers is a more accurate calculation of the amount of the floodgate. In particular, using the Landsat images through the image of the land use category, land use past data and calculated using the Markov Chain model and predict the future land use plan in the water control project will be used for large likely.

IT융합 기반의 고고범퍼카 콘텐츠 개발 및 프로젝트 적용 사례 (Development and Case Review of IT Convergence GoGo Bumper Car Project)

  • 박홍준;전영국
    • 컴퓨터교육학회논문지
    • /
    • 제18권2호
    • /
    • pp.21-33
    • /
    • 2015
  • 본 논문의 목적은 오픈하드웨어 기반의 고고보드를 사용하여 IT융합 기반의 로봇교육용 콘텐츠를 설계 및 개발하고 프로젝트 수행 사례를 제공하는데 있다. 연구자는 3회에 걸쳐 프로젝트를 실시하였으며 초등학생 및 중학생들의 작품 사진, 산출물, 설문지 자료, 팀별 활동에 관한 비디오, 교수자 및 학생들의 면담 자료를 수집하여 분석하였다. 개별 학생은 고고보드를 활용하여 차체의 전면과 후면에 부착된 터치 센서의 입력신호로 모터를 구동하는 범퍼카를 직접 제작하는 과정을 통해 센싱에 의한 디지털 보드 제어 원리와 전동장치의 작동을 이해할 수 있었다. 참여 학생들은 후속 단계에서 도미노 게임과 3단계 주행구간에서 고고 면허증을 따는 팀별 활동을 수행하였다. 영재반 학생들은 자신의 아이디어를 새롭게 고안하여 로봇예술의 일환으로 개인 창작품을 제작하였다. 사례 분석 결과 제안된 프로젝트는 참여학생들 이 교수자의 면밀한 도움 아래 공작 체험이 디지털 보드 활용에 관한 기술에 대한 친밀감, 재미, 집중력을 제공하였고 더 나아가 자신의 아이디어를 점진적으로 발전시켜 창의적 작품을 만들어나가는 확장성을 보여주었다.