• Title/Summary/Keyword: Data order

Search Result 32,378, Processing Time 0.051 seconds

Design of Korean Data Center for SDO

  • Choi, Seong-Hwan;Hwang, Eun-Mi;Cho, Kyung-Suk;Kim, Yeon-Han;Park, Young-Deuk;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.92.1-92.1
    • /
    • 2011
  • NASA launched Solar Dynamics Observatory (SDO) on February 2011 in order to understand the cause of solar activities and their influences on the Earth and the near-Earth space. KASI is constructing Korean Data Center for SDO based on the letter of agreement between KASI and NASA for space weather research. SDO produces about 1.5 TB a day and its raw data amounts to about 550 TB in a year. Stanford University has been already operating the data center for scientific raw data, but there is a limit to use its data for space weather research and space weather service in real time because of network environment. Korean Data Center for SDO will provide scientific data not only to Korean institutes but also to international space weather societies. KASI has designed the data transfer system by using GLORIAD in order to get higher performance and stability. After the first construction of data transfer system and storage system in this year, we will increase the storage capacity of the data center in phases considering new developments in a storage technology and drop of their prices.

  • PDF

An Alert Data Mining Framework for Intrusion Detection System (침입탐지시스템의 경보데이터 분석을 위한 데이터 마이닝 프레임워크)

  • Shin, Moon-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.459-466
    • /
    • 2011
  • In this paper, we proposed a data mining framework for the management of alerts in order to improve the performance of the intrusion detection systems. The proposed alert data mining framework performs alert correlation analysis by using mining tasks such as axis-based association rule, axis-based frequent episodes and order-based clustering. It also provides the capability of classify false alarms in order to reduce false alarms. We also analyzed the characteristics of the proposed system through the implementation and evaluation of the proposed system. The proposed alert data mining framework performs not only the alert correlation analysis but also the false alarm classification. The alert data mining framework can find out the unknown patterns of the alerts. It also can be applied to predict attacks in progress and to understand logical steps and strategies behind series of attacks using sequences of clusters and to classify false alerts from intrusion detection system. The final rules that were generated by alert data mining framework can be used to the real time response of the intrusion detection system.

Environmental IoT-Enabled Multimodal Mashup Service for Smart Forest Fires Monitoring

  • Elmisery, Ahmed M.;Sertovic, Mirela
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.163-170
    • /
    • 2017
  • Internet of things (IoT) is a new paradigm for collecting, processing and analyzing various contents in order to detect anomalies and to monitor particular patterns in a specific environment. The collected data can be used to discover new patterns and to offer new insights. IoT-enabled data mashup is a new technology to combine various types of information from multiple sources into a single web service. Mashup services create a new horizon for different applications. Environmental monitoring is a serious tool for the state and private organizations, which are located in regions with environmental hazards and seek to gain insights to detect hazards and locate them clearly. These organizations may utilize IoT - enabled data mashup service to merge different types of datasets from different IoT sensor networks in order to leverage their data analytics performance and the accuracy of the predictions. This paper presents an IoT - enabled data mashup service, where the multimedia data is collected from the various IoT platforms, then fed into an environmental cognition service which executes different image processing techniques such as noise removal, segmentation, and feature extraction, in order to detect interesting patterns in hazardous areas. The noise present in the captured images is eliminated with the help of a noise removal and background subtraction processes. Markov based approach was utilized to segment the possible regions of interest. The viable features within each region were extracted using a multiresolution wavelet transform, then fed into a discriminative classifier to extract various patterns. Experimental results have shown an accurate detection performance and adequate processing time for the proposed approach. We also provide a data mashup scenario for an IoT-enabled environmental hazard detection service and experimentation results.

Naval Vessel Spare Parts Demand Forecasting Using Data Mining (데이터마이닝을 활용한 해군함정 수리부속 수요예측)

  • Yoon, Hyunmin;Kim, Suhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.253-259
    • /
    • 2017
  • Recent development in science and technology has modernized the weapon system of ROKN (Republic Of Korea Navy). Although the cost of purchasing, operating and maintaining the cutting-edge weapon systems has been increased significantly, the national defense expenditure is under a tight budget constraint. In order to maintain the availability of ships with low cost, we need accurate demand forecasts for spare parts. We attempted to find consumption pattern using data mining techniques. First we gathered a large amount of component consumption data through the DELIIS (Defense Logistics Intergrated Information System). Through data collection, we obtained 42 variables such as annual consumption quantity, ASL selection quantity, order-relase ratio. The objective variable is the quantity of spare parts purchased in f-year and MSE (Mean squared error) is used as the predictive power measure. To construct an optimal demand forecasting model, regression tree model, randomforest model, neural network model, and linear regression model were used as data mining techniques. The open software R was used for model construction. The results show that randomforest model is the best value of MSE. The important variables utilized in all models are consumption quantity, ASL selection quantity and order-release rate. The data related to the demand forecast of spare parts in the DELIIS was collected and the demand for the spare parts was estimated by using the data mining technique. Our approach shows improved performance in demand forecasting with higher accuracy then previous work. Also data mining can be used to identify variables that are related to demand forecasting.

The Development of the Short-Term Predict Model for Solar Power Generation (태양광발전 단기예측모델 개발)

  • Kim, Kwang-Deuk
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.62-69
    • /
    • 2013
  • In this paper, Korea Institute of Energy Research, building integrated renewable energy monitoring system that utilizes solar power generation forecast data forecast model is proposed. Renewable energy integration of real-time monitoring system based on monitoring data were building a database and the database of the weather conditions and to study the correlation structure was tailoring. The weather forecast cloud cover data, generation data, and solar radiation data, a data mining and time series analysis using the method developed models to forecast solar power. The development of solar power in order to forecast model of weather forecast data it is important to secure. To this end, in three hours, including a three-day forecast today Meteorological data were used from the KMA(korea Meteorological Administration) site offers. In order to verify the accuracy of the predicted solar circle for each prediction and the actual environment can be applied to generation and were analyzed.

Dynamic Order Release Policy Considering The Due Date of Order for Automated Manufacturing Systems (자동생산시스템에서 납기를 고려한 동적주문투입정책)

  • 노인규;박찬웅
    • Journal of the military operations research society of Korea
    • /
    • v.22 no.2
    • /
    • pp.153-165
    • /
    • 1996
  • This paper presents an order releasing algorithm for an AMS. Order release policy determine order releasing time to shop floor so as to improve order management and shop performance. The proposed order releasing algorithm can cope with the dynamic environment of orders(e.g. change or cancel of order) flexibly and fastly, by processing individual order and exchanging the information(e.g. compeletion time or lateness of order, etc) with customer. And the objective of the order releasing algorithm is the observance of the due-date, therefore, it can provide customer with a reliability of order. Computer simulation is used to obtain the makespan of order which is the input data of the order releasing algorithm. The eight candidate part dispatching rules are simulated to selected an effective part dispatching rule for the computer simulation. By using the best effective part dispatching rule, the computer simulation is conducted to determine order releasing time.

  • PDF

A Study on the Introductioin of Data Trusts System to Expand the Rights of Privacy Self-Determination (개인정보 자기결정권 확대를 위한 데이터 신탁제도 도입 방안 연구)

  • Jang, Keunjae;Lee, Seungyong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.29-43
    • /
    • 2022
  • With the advent of the Internet and the development of mobile digital devices such as smartphones and tablet PCs, the communication service paradigm began to shift from existing voice services to data services. Recently, as social network services (SNS) are activated and 4th industrial revolution technologies centered on ICT (Information and Communication Technologies) such as Big Data, Blockchain, Cloud, and 5G/6G are rapidly developed, the amount of shared data type and the amount of data are increasing rapidly. As the transition to a digital society begins actively, the importance of using data information, as well as the economic and social values of personal information are becoming increasingly important. As a result, they are actively discussing policies to revitalize the data information industry around the world and ways to efficiently obtain, analyze, and utilize increasingly diverse and vast data, as well as to protect/guarantee the rights of information subjects (providers) in various fields such as society, culture, economy, and politics.. In this paper, in order to improve the self-determination right of personal information on data produced by information subjects, and further expand the use of safe data and the data economy, a differentiated data trusts system was considered and suggested. In addition, the components and data trusts procedures necessary to efficiently operate the data trusts system in Korea were considered, and the non-profit data trusts system and the for-profit data trusts system were considered as a way to flexibly operate the data trusts system. Furthermore, the legal items necessary for the implementation of the data trusts system were investigated and considered. In this paper, in order to propose a domestic data trusts system, cases related to existing data trusts systems such as the United States, Japan, and Korea were reviewed and analyzed. In addition, in order to prepare legislation necessary for the data trusts system, data-related laws in major countries and domestic legal and policy trends were reviewed to study the rights that conflict or overlap with existing laws, and differences were investigated and considered. The Data trusts system proposed in this paper is a reasonable system that is expected to recognize the asset value of data in the capitalist market economy system, to provide legitimate compensation for data produced by data subjects, and further to contribute greatly to the use of safe data and creation of a new service market.

A Study on the Multi-sensor Data Fusion System for Ground Target Identification (지상표적식별을 위한 다중센서기반의 정보융합시스템에 관한 연구)

  • Gang, Seok-Hun
    • Journal of National Security and Military Science
    • /
    • s.1
    • /
    • pp.191-229
    • /
    • 2003
  • Multi-sensor data fusion techniques combine evidences from multiple sensors in order to get more accurate and efficient meaningful information through several process levels that may not be possible from a single sensor alone. One of the most important parts in the data fusion system is the identification fusion, and it can be categorized into physical models, parametric classification and cognitive-based models, and parametric classification technique is usually used in multi-sensor data fusion system by its characteristic. In this paper, we propose a novel heuristic identification fusion method in which we adopt desirable properties from not only parametric classification technique but also cognitive-based models in order to meet the realtime processing requirements.

  • PDF

ARMA Modeling for Nonstationary Time Series Data without Differencing

  • Shin, Dong-Wan;Park, You-Sung
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.3
    • /
    • pp.371-387
    • /
    • 1999
  • For possibly nonstationary autoregressive moving average, modeling based on the original observations rather than the differenced observations is considered. Under this scheme, sample autocorrelation functions, parameter estimates, model diagnostic statistics, and prediction are all computed from the original data instead of the differenced data. The methods and results established under stationarity of data are shown to naturally extend to the nonstationarity of one autoregressive unit root. The sample ACF and PACF can be used for ARMA order determination. The BIC order is strongly consistent. The parameter estimates are asymptotically normal. The portmanteau statistic has chi-square distribution. The predictor is asymptotically equivalent to that based on the differenced data.

  • PDF