• 제목/요약/키워드: Data normalization

검색결과 488건 처리시간 0.026초

The design of the Fall detection algorithm using the smartphone accelerometer sensor

  • Lee, Daepyo;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • 제5권2호
    • /
    • pp.54-62
    • /
    • 2017
  • Currently, falling to industrial field workers is causing serious injuries. Therefore, many researchers are actively studying the fall by using acceleration sensor, gyro sensor, pressure sensor and image information.Also, as the spread of smartphones becomes common, techniques for determining the fall by using an acceleration sensor built in a smartphone are being studied. The proposed method has complexity due to fusion of various sensor data and it is still insufficient to develop practical application. Therefore, in this paper, we use acceleration sensor module built in smartphone to collect acceleration data, propose a simple falling algorithm based on accelerometer sensor data after normalization and preprocessing, and implement an Android based app.

Enhanced Strain Imaging Using Quality Measure

  • Jeong, Mok-Kun;Kwon, Sung-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • 제27권3E호
    • /
    • pp.84-94
    • /
    • 2008
  • Displacement estimation is a crucial step in ultrasonic strain imaging. The displacement between a pre- and postcompression signal in the current data window is estimated by first shifting the postcompression signal by the displacement obtained in the previous data window to reduce their decorrelation and then determining the remaining part of the displacement through autocorrelation and conversion of phase difference into time delay. However, since strain image quality tends to vary with the amount of compression applied, we propose two new methods for enhancing strain image quality, i.e., displacement normalization and adaptive persistence. Both in vitro and in vivo experiments are carried out to acquire ultrasound data and produce strain images in real time under the application of quasi static compression. The experimental results demonstrate that the methods are quite effective in improving strain image quality and thus can be applied to implementing an ultrasound elasticity imaging system that operates in real time.

화자 식별에서의 배경화자데이터를 이용한 히스토그램 등화 기법 (Histogram Equalization Using Background Speakers' Utterances for Speaker Identification)

  • 김명재;양일호;소병민;김민석;유하진
    • 말소리와 음성과학
    • /
    • 제4권2호
    • /
    • pp.79-86
    • /
    • 2012
  • In this paper, we propose a novel approach to improve histogram equalization for speaker identification. Our method collects all speech features of UBM training data to make a reference distribution. The ranks of the feature vectors are calculated in the sorted list of the collection of the UBM training data and the test data. We use the ranks to perform order-based histogram equalization. The proposed method improves the accuracy of the speaker recognition system with short utterances. We use four kinds of speech databases to evaluate the proposed speaker recognition system and compare the system with cepstral mean normalization (CMN), mean and variance normalization (MVN), and histogram equalization (HEQ). Our system reduced the relative error rate by 33.3% from the baseline system.

장단기 메모리를 이용한 노인 낙상감지시스템의 정규화에 대한 연구 (Study of regularization of long short-term memory(LSTM) for fall detection system of the elderly)

  • 정승수;김남호;유윤섭
    • 한국정보통신학회논문지
    • /
    • 제25권11호
    • /
    • pp.1649-1654
    • /
    • 2021
  • 본 논문에서는 고령자의 낙상상황을 감지할 수 있는 텐서플로우 장단기 메모리 기반 낙상감지 시스템의 정규화에 대하여 소개한다. 낙상감지는 고령자의 몸에 부착한 3축 가속도 센서 데이터를 사용하며, 총 7가지의 행동 패턴들에 대하여 학습하며, 각각 4가지는 일상생활에서 일어나는 패턴이고, 나머지 3가지는 낙상에 대한 패턴이다. 학습시에는 손실함수(loss function)를 효과적으로 줄이기 위하여 정규화 과정을 진행하며, 정규화 과정은 데이터에 대하여 최대최소 정규화, 손실함수에 대하여 L2 정규화 과정을 진행한다. 3축 가속도 센서를 이용하여 구한 다양한 파라미터에 대하여 정규화 과정의 최적의 조건을 제시한다. 낙상 검출율면에서 SVM을 이용하고 정규화 127과 정규화율 λ 0.00015일 때 Sensitivity 98.4%, Specificity 94.8%, Accuracy 96.9%로 가장 좋은 모습을 보였다.

R&D 프로젝트 성과평가를 위한 DEA모형의 타당성 실증분석 : 정규화지표와의 순위상관을 중심으로 (Empirical Analysis of DEA models Validity for R&D Project Performance Evaluation : Focusing on Rank Correlation with Normalization Index)

  • 박성민
    • 산업공학
    • /
    • 제24권4호
    • /
    • pp.314-322
    • /
    • 2011
  • This study analyzes a relationship between Data Envelopment Analysis(DEA) efficiency scores and a normalization index in order to examine the validity of DEA models. A normalization index concerned in this study is 'sales per R&D project fund' which is regarded as a crucial R&D project performance evaluation index in practice. For this correlation analysis, three distinct DEA models are selected such as DEA basic model, DEA/AR-I revised model(i.e. DEA basic model with Acceptance Region Type I constraints) and Super-Efficiency(SE) model. Especially, SE model is adopted where efficient R&D projects(i.e. Decision Making Units, DMU's) with DEA efficiency score of unity from DEA basic model can be further differentiated in ranks. Considering the non-normality and outliers, two rank correlation coefficients such as Spearman's ${\rho}_s$ and Kendall's ${\tau}_B$ are investigated in addition to Pearson's ${\gamma}$. With an up-to-date empirical massive dataset of n = 482 R&D projects associated with R&D Loan Program of Korea Information Communication Promotion Fund in the year of 2011, statistically significant (+) correlations are verified between the normalization index and every model's DEA efficiency scores with all three correlation coefficients. Especially, the congruence verified in this empirical analysis can be a useful reference for enhancing the practitioner's acceptability onto DEA efficiency scores as a real-world R&D project performance evaluation index.

유전자알고리즘을 기반으로 하는 정규화 기법에 관한 연구 : 역전파 알고리즘을 이용한 부도예측 모형을 중심으로 (GA-based Normalization Approach in Back-propagation Neural Network for Bankruptcy Prediction Modeling)

  • 태추월;신경식
    • 지능정보연구
    • /
    • 제16권3호
    • /
    • pp.1-14
    • /
    • 2010
  • 역전파 알고리즘은 오랫동안 부도예측모형 관련한 연구에 많이 적용되어왔다. 역전파 알고리즘을 사용하기전에 필히 고려해야 할 중요한 요소들로는 네트워크 구조, 학습요소, 정규화 방법 등이다. 하지만 신경망 성과를 향상시키기 위한 네트워크 구조 및 학습요소 최적화 관련한 연구는 기존의 연구들에서 많이 이루어 졌지만 데이터 정규화와 관련한 연구는 아직 많이 이루어지지 않았다. 따라서 본 연구에서는 유전자 알고리즘을 기반으로 하는 정규화 기법을 제시하였다. 최적의 입력데이터 정규화를 위하여 본 연구에서는 우선 각각의 서로 다른 정규화 기법들을 동일 가중치를 두어 일반화 시켰으며 유전자 알고리즘을 이용하여 최적의 가중치를 찾음으로써 최적화된 입력변수 정규화가 이루어지도록 하였다. 제안한 방법론을 검증하기 위하여 부도예측 데이터를 이용하여 실험을 하였으며 제안하는 방법과 기존 다른 방법들간의 비교를 통하여 그 타당성을 검증하였다.

표준화 기반 유의한 유전자 선택 방법 조합을 이용한 마이크로어레이 분류 시스템 설계 (The Design Of Microarray Classification System Using Combination Of Significant Gene Selection Method Based On Normalization.)

  • 박수영;정채영
    • 한국정보통신학회논문지
    • /
    • 제12권12호
    • /
    • pp.2259-2264
    • /
    • 2008
  • 정보력 있는 유전자는 특정한 실험 조건의 특성을 나타내주는 발현수준의 유전자를 의미한다. 이 유전자들은 여러 집단 간의 발현수준에서 유의한 차이를 보여주며, 실제로 집단 간의 차이를 유발하는 유전자일 확률이 높아 특정 생물학적 현상과 관련 있는 정보적 유전자를 찾는 연구에 이용될 수 있다. 본 논문에서는 먼저 그 동안 제안된 여러 표준화 방법들 중에서 가장 널리 사용되고 있는 방법들을 이용하여 데이터를 표준화 한 후 제안한 유사성 척도 조합 방법으로 정보력 있는 유전자들을 추출할 수 있는 시스템을 고안하였다. 다층퍼셉트론 신경망 분류기를 이용하여 각 표준화 방법들의 성능을 비교분석하였다. 그 결과 Lowess 표준화 후 피어슨 적률 상관 계수와 유클리디안 거리 계수 조합을 이용하여 선택된 200 유전자들을 멀티퍼셉트론 신경망 분류기로 분류한 결과 93.84%의 향상된 분류 성능을 보였다.

A MA-plot-based Feature Selection by MRMR in SVM-RFE in RNA-Sequencing Data

  • Kim, Chayoung
    • 한국정보기술학회논문지
    • /
    • 제16권12호
    • /
    • pp.25-30
    • /
    • 2018
  • 유전자 규정 네트워크 (GRN)에 RNA-시퀀싱 데이터를 활용할 때, 해당 유전자와 환경과의 상호 작용에 의해서 생기는 형질들 중에서 연관성이 높은 유전자로 GRN을 구성하는 것은 상당히 어려운 일이다. 본 연구에서는 Big-Data의 RNA-시퀀싱 자료들로, 지지 벡터 머신 회귀 특징 추출(SVM-RFE) 에 근거하여, 연관성이 높은 유전자(maximum-relevancy)는 추출하고, 연관성이 낮은 유전자(minimum-redundancy)는 제거하는 MRMR 필터 방법을 집중도 의존 정규화(intensity-dependent normalization, DEGSEQ)에 기반 하여 데이터의 정밀성을 높여, 소수 연관성 높은 유전자만 판별해 내는 방법을 사용한다. 제안한 방법은 R 언어 패키지를 사용하여 편리함과 동시에, 다른 기존의 방법을 비교하였을 때, Big-Data의 시간 활용도를 높이면서, 동시에 높은 연관성 있는 유전자만을 잘 추출해 냄을 확인하였다.

Application of Change Detection Techniques using KOMPSAT-1 EOC Images

  • Lee, Kwang-Jae;Kim, Youn-Soo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.222-227
    • /
    • 2002
  • This research will examine into the capabilities of KOMPSAI-1 EOC image application in the field of urban environment and at the same time, with that as its foundation, come to understand the urban changes of the study areas. This research is constructed in three stages: Firstly, for application of change detection techniques, which utilizes multi-temporal remotely sensed data, the data normalization process is carried out. Secondly, change detection method is applied fur the systematic monitoring of land use changes, which utilizes multi-temporal EOC images. Lastly, by using the results of the application of land use changes, the existing land use map is updated. Consequently, the land-use change patterns are monitored, which utilize multi-temporal panchromatic EOC image data; and application potentials of ancillary data fur updating existing data can be presented. In this research, with the use of the land use change, monitoring of urban growth has been carried out, and the potential for the application of KOMPSAT-1 EOC images and the scope of application was examined. Henceforth, the future expansion of the scope of application of KOMPSAT-1 EOC image is anticipated.

  • PDF

부분방전 패턴인식기법으로서의 Neural Network 알고리즘 비교 분석 (A Comparative Study on Neural Network Algorithms for Partial Discharge Pattern Recognition)

  • 이호근;김정태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.109-112
    • /
    • 2004
  • In this study, the applicability of SOM(Self Organizing Map) algorithm to partial discharge pattern recognition have been investigated. For the purpose, using acquired data from the artificial defects in GIS, SOM algorithm which has some advantages such as data accumulation ability and the degradation trend trace ability was compared with conventionally used BP(Back Propagation) algorithm. As a result, basically BP algorithm was found out to be better than SOM algorithm. Therefore, it is needed to apply SOM algorithm in combination with BP algorithm in order to improve on-site applicability using the advantages of SOM. Also, for the pattern recognition by use of PRPDA(Phase Resolved Partial Discharge Analysis) it is required the normalization of the PRPDA graph. However, in case of the normalization both BP and SOM algorithm have shown worse results, so that it is required further study to solve the problem.

  • PDF