• Title/Summary/Keyword: Data generation

Search Result 6,560, Processing Time 0.039 seconds

Automatic Generation of Issue Analysis Report Based on Social Big Data Mining (소셜 빅데이터 마이닝 기반 이슈 분석보고서 자동 생성)

  • Heo, Jeong;Lee, Chung Hee;Oh, Hyo Jung;Yoon, Yeo Chan;Kim, Hyun Ki;Jo, Yo Han;Ock, Cheol Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.553-564
    • /
    • 2014
  • In this paper, we propose the system for automatic generation of issue analysis report based on social big data mining, with the purpose of resolving three problems of the previous technologies in a social media analysis and analytic report generation. Three problems are the isolation of analysis, the subjectivity of experts and the closure of information attributable to a high price. The system is comprised of the natural language query analysis, the issue analysis, the social big data analysis, the social big data correlation analysis and the automatic report generation. For the evaluation of report usefulness, we used a Likert scale and made two experts of big data analysis evaluate. The result shows that the quality of report is comparatively useful and reliable. Because of a low price of the report generation, the correlation analysis of social big data and the objectivity of social big data analysis, the proposed system will lead us to the popularization of social big data analysis.

A Novel Simulation model of Solar Cell using EMTDC (EMTDC를 이용한 태양전지의 새로운 시뮬레이션 모델)

  • Park, Min-Won;Kim, Bong-Tae;Lee, Jae-Deuk;Yu, In-Keun;Sung, Ki-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.113-115
    • /
    • 2000
  • So far, it was very difficult to simulate the dispersed generation system including PV generation system using EMTP or EMTDC because the source of the dispersed generation system has a particular VI characteristic equation. In this paper, a novel simulation method of PV generation system has proposed and a new solar cell component for EMTDC is also developed. The VI characteristic equation of solar cell is used in order to realize the solar generation system in EMTDC simulation. Consequently the simulation of PV power generation system using field data is realized and acceptable results, which show close match between the real data of PV panel and the simulated data, were obtained.

  • PDF

A Study on Texturing of Procedural Generation of based on Physically Based Materials (물리 기반 메터리얼을 기반으로 하는 절차적 생성 방식의 텍스쳐링에 관한 연구)

  • Younghun Lee
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.143-155
    • /
    • 2023
  • Procedural generation methods based on physical-based materials generate data by algorithms rather than manual through combinations with artist-generated assets based on computer-generated randomness algorithms. For this reason, the procedural generation method is mainly used to produce textures of 3D models in the field of computer graphics because it is easy to obtain the desired quality with little data. This study is a study on physical-based materials and procedural generation methods based on them. Physical-based materials are divided into Metallic/Roughness workflows and Specific/Glossiness workflows. These two methods produce the same results, which are more accurate based on the law of conservation of energy. The procedural generation method allows a natural texture to be obtained very quickly by texturing through a combination of a computer-generated random algorithm and an artist-generated asset based on various maps.

Counterfactual image generation by disentangling data attributes with deep generative models

  • Jieon Lim;Weonyoung Joo
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.589-603
    • /
    • 2023
  • Deep generative models target to infer the underlying true data distribution, and it leads to a huge success in generating fake-but-realistic data. Regarding such a perspective, the data attributes can be a crucial factor in the data generation process since non-existent counterfactual samples can be generated by altering certain factors. For example, we can generate new portrait images by flipping the gender attribute or altering the hair color attributes. This paper proposes counterfactual disentangled variational autoencoder generative adversarial networks (CDVAE-GAN), specialized for data attribute level counterfactual data generation. The structure of the proposed CDVAE-GAN consists of variational autoencoders and generative adversarial networks. Specifically, we adopt a Gaussian variational autoencoder to extract low-dimensional disentangled data features and auxiliary Bernoulli latent variables to model the data attributes separately. Also, we utilize a generative adversarial network to generate data with high fidelity. By enjoying the benefits of the variational autoencoder with the additional Bernoulli latent variables and the generative adversarial network, the proposed CDVAE-GAN can control the data attributes, and it enables producing counterfactual data. Our experimental result on the CelebA dataset qualitatively shows that the generated samples from CDVAE-GAN are realistic. Also, the quantitative results support that the proposed model can produce data that can deceive other machine learning classifiers with the altered data attributes.

An Improved Technique of Fitness Evaluation for Automated Test Data Generation (테스트 데이터 자동 생성을 위한 적합도 평가 방법의 효율성 향상 기법)

  • Lee, Sun-Yul;Choi, Hyun-Jae;Jeong, Yeon-Ji;Bae, Jung-Ho;Kim, Tae-Ho;Chae, Heung-Suk
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.12
    • /
    • pp.882-891
    • /
    • 2010
  • Many automated dynamic test data generation technique have been proposed. The techniques evaluate fitness of test data through executing instrumented Software Under Test (SUT) and then generate new test data based on evaluated fitness values and optimization algorithms. Previous researches and experiments have been showed that these techniques generate effective test data. However, optimization algorithms in these techniques incur much time to generate test data, which results in huge test case generation cost. In this paper, we propose a technique for reducing the time of evaluating a fitness of test data among steps of dynamic test data generation methods. We introduce the concept of Fitness Evaluation Program (FEP), derived from a path constraint of SUT. We suggest a test data generation method based on FEP and implement a test generation tool, named ConGA. We also apply ConGA to generate test cases for C programs, and evaluate efficiency of the FEP-based test case generation technique. The experiments show that the proposed technique reduces 20% of test data generation time on average.

Factors Impacting on Korean Consumer Goods Purchase Decision of Vietnam's Generation Z

  • NGUYEN, Xuan Truong
    • Journal of Distribution Science
    • /
    • v.17 no.10
    • /
    • pp.61-71
    • /
    • 2019
  • Purpose - This study aims to explore the impact of factors on Korean consumer goods purchase decision of Vietnam's Generation Z. Research design, data, and methodology - A mixed research method was utilized in this study including focus group, in-depth interview, pilot study, and official study. The conceptual model and hypothesis were tested using data collected cross-sectional by questionnaire, from a sample of 439 respondents, by both electronic and paper surveys with non-probability and convenience sampling. The SPSS 20 and AMOS 20 software were employed to analyze the data. Results - Results showed that Vietnam's Generation Z was strongly impacted by social media, Hallyu, country of origin, social norms, and perceived usefulness. Besides, Korean consumer goods purchase decision of Vietnam's Generation Z also were impacted by intermediary factors such as trust, social norms, product involvement, perceived quality, perceived usefulness, attitude, and buying intention. There were differences in factors affecting the purchase decision of the boy and girl Generation Z group. Conclusions - The factors impacting on Korean consumer goods decision of Vietnam's Generation Z are very important for Korean firms and government. The findings provide Korean firms opportunity for appropriate to be carried out factors impacting Korean consumer goods to generation Z in Vietnam successful.

Trip Generation Analysis Using Mobile Phone Data (무선통신 자료를 활용한 통행발생량 분석)

  • Kim, Kyoungtae;Lee, Inmook;Min, Jae Hong;Kwak, Ho-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.5
    • /
    • pp.481-488
    • /
    • 2015
  • The recent trend in transportation planning information is to reduce traffic survey costs and enhance accuracy by using and converging various sources of external data. In Korea, mobile phone data can help generate useful transportation planning information, thanks to the universal use of mobile phones, which are present in a number greater than that of the population. This paper addresses measures to derive trip generation information from mobile phone data and verifies the value of the system for practical use by correlation analysis with KTDB trip generation data. The results show that trip generation information produced by mobile phone data correlates with existing (KTDB) trip generation data.

Next Generation Smart-City Facility Platform and Digital Chain (차세대 스마트도시 시설물의 플랫폼 정의와 디지털 체인)

  • Yang, Seung-Won;Kim, Jin-Wooung;Kim, Sung-Ah
    • Journal of KIBIM
    • /
    • v.10 no.4
    • /
    • pp.11-21
    • /
    • 2020
  • With increasing interest and research on smart cities, there is also an increasing number of studies on urban facilities that can be built within smart cities. According to these studies, smart cities' urban facilities are likely to become high value-added industries. However, the concept of smart city is not clear because it involves various fields. Therefore, in this study, the definition of Next-Generation(N.G) Smart City Facilities with Digital Twin and Digital Chain is carried out through a multidisciplinary approach. Based on this, Next-Generation Smart City Facilities will be divided into High Value-Added Products and Big Data Platforms. Subsequently, the definition of the Digital Chain containing the data flow of the entire process built through the construction of the Digital Twin proceeds. The definitions derived are applied to the Next-Generation Noise Barrier Tunnel to ensure that data is exchanged at the Digital Twin stage, and to review the proposed configuration of the Digital Chain and Data Flow in this study. The platform definition and Digital Chain of Next-Generation Smart City Facilities proposed in this study suggest that it can affect not only the aspects of data management that are currently in the spotlight, but also the manufacturing industry as a whole.

Estimating the Loss Ratio of Solar Photovoltaic Electricity Generation through Stochastic Analysis

  • Hong, Taehoon;Koo, Choongwan;Lee, Minhyun
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.3
    • /
    • pp.23-34
    • /
    • 2013
  • As climate change and environmental pollution become one of the biggest global issues today, new renewable energy, especially solar photovoltaic (PV) system, is getting great attention as a sustainable energy source. However, initial investment cost of PV system is considerable, and thus, it is crucial to predict electricity generation accurately before installation of the system. This study analyzes the loss ratio of solar photovoltaic electricity generation from the actual PV system monitoring data to predict electricity generation more accurately in advance. This study is carried out with the following five steps: (i) Data collection of actual electricity generation from PV system and the related information; (ii) Calculation of simulation-based electricity generation; (iii) Comparative analysis between actual electricity generation and simulation-based electricity generation based on the seasonality; (iv) Stochastic approach by defining probability distribution of loss ratio between actual electricity generation and simulation-based electricity generation ; and (v) Case study by conducting Monte-Carlo Simulation (MCS) based on the probability distribution function of loss ratio. The results of this study could be used (i) to estimate electricity generation from PV system more accurately before installation of the system, (ii) to establish the optimal maintenance strategy for the different application fields and the different season, and (iii) to conduct feasibility study on investment at the level of life cycle.

ESTIMATING THE LOSS RATIO OF SOLAR PHOTOVOLTAIC ELECTRICITY GENERATION THROUGH STOCHASTIC ANALYSIS

  • Taehoon Hong;Choongwan Koo;Minhyun Lee
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.375-385
    • /
    • 2013
  • As climate change and environmental pollution become one of the biggest global issues today, new renewable energy, especially solar photovoltaic (PV) system, is getting great attention as a sustainable energy source. However, initial investment cost of PV system is considerable, and thus, it is crucial to predict electricity generation accurately before installation of the system. This study analyzes the loss ratio of solar photovoltaic electricity generation from the actual PV system monitoring data to predict electricity generation more accurately in advance. This study is carried out with the following five steps: (i) Data collection of actual electricity generation from PV system and the related information; (ii) Calculation of simulation-based electricity generation; (iii) Comparative analysis between actual electricity generation and simulation-based electricity generation based on the seasonality; (iv) Stochastic approach by defining probability distribution of loss ratio between actual electricity generation and simulation-based electricity generation ; and (v) Case study by conducting Monte-Carlo Simulation (MCS) based on the probability distribution function of loss ratio. The results of this study could be used (i) to estimate electricity generation from PV system more accurately before installation of the system, (ii) to establish the optimal maintenance strategy for the different application fields and the different season, and (iii) to conduct feasibility study on investment at the level of life cycle.

  • PDF