• Title/Summary/Keyword: Data feature analysis

Search Result 1,397, Processing Time 0.034 seconds

Speaker Adaptation using ICA-based Feature Transformation (ICA 기반의 특징변환을 이용한 화자적응)

  • Park ManSoo;Kim Hoi-Rin
    • MALSORI
    • /
    • no.43
    • /
    • pp.127-136
    • /
    • 2002
  • The speaker adaptation technique is generally used to reduce the speaker difference in speech recognition. In this work, we focus on the features fitted to a linear regression-based speaker adaptation. These are obtained by feature transformation based on independent component analysis (ICA), and the transformation matrix is learned from a speaker independent training data. When the amount of data is small, however, it is necessary to adjust the ICA-based transformation matrix estimated from a new speaker utterance. To cope with this problem, we propose a smoothing method: through a linear interpolation between the speaker-independent (SI) feature transformation matrix and the speaker-dependent (SD) feature transformation matrix. We observed that the proposed technique is effective to adaptation performance.

  • PDF

Multimodal System by Data Fusion and Synergetic Neural Network

  • Son, Byung-Jun;Lee, Yill-Byung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.157-163
    • /
    • 2005
  • In this paper, we present the multimodal system based on the fusion of two user-friendly biometric modalities: Iris and Face. In order to reach robust identification and verification we are going to combine two different biometric features. we specifically apply 2-D discrete wavelet transform to extract the feature sets of low dimensionality from iris and face. And then to obtain Reduced Joint Feature Vector(RJFV) from these feature sets, Direct Linear Discriminant Analysis (DLDA) is used in our multimodal system. In addition, the Synergetic Neural Network(SNN) is used to obtain matching score of the preprocessed data. This system can operate in two modes: to identify a particular person or to verify a person's claimed identity. Our results for both cases show that the proposed method leads to a reliable person authentication system.

Region Growing Segmentation with Directional Features

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.731-740
    • /
    • 2010
  • A region merging technique is suggested in this paper for the segmentation of high-spatial resolution imagery. It employs a region growing scheme based on the region adjacency graph (RAG). The proposed algorithm uses directional neighbor-line average feature vectors to improve the quality of segmentation. The feature vector consists of 9 components which includes an observation and 8 directional averages. Each directional average is the average of the pixel values along the neighbor line for a given neighbor line length at each direction. The merging coefficients of the segmentation process use a part of the feature components according to a given merging coefficient order. This study performed the extensive experiments using simulation data and a real high-spatial resolution data of IKONOS. The experimental results show that the new approach proposed in this study is quite effective to provide segments of high quality for the object-based analysis of high-spatial resolution images.

Probabilistic Approach on Railway Infrastructure Stability and Settlement Analysis

  • Lee, Sangho
    • International Journal of Railway
    • /
    • v.6 no.2
    • /
    • pp.45-52
    • /
    • 2013
  • Railway construction needs vast soil investigation for its infrastructure foundation designs along the planned railway path to identify the design parameters for stability and serviceability checks. The soil investigation data are usually classified and grouped to decide design input parameters per each construction section and budget estimates. Deterministic design method which most civil engineer and practitioner are familiar with has a clear limitation in construction/maintenance budget control, and occasionally produced overdesigned or unsafe design problems. Instead of using a batch type analysis with predetermined input parameters, data population collected from site soil investigation and design load condition can be statistically estimated for the mean and variance to present the feature of data distribution and optimized with a best fitting probability function. Probabilistic approach using entire feature of design input data enables to predict the worst, best and most probable cases based on identified ranges of soil and load data, which will help railway designer select construction method to save the time and cost. This paper introduces two Monte Carlo simulations actually applied on estimation of retaining wall external stability and long term settlement of organic soil in soil investigation area for a recent high speed railway project.

Feature Extraction and Statistical Pattern Recognition for Image Data using Wavelet Decomposition

  • Kim, Min-Soo;Baek, Jang-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.831-842
    • /
    • 1999
  • We propose a wavelet decomposition feature extraction method for the hand-written character recognition. Comparing the recognition rates of which methods with original image features and with selected features by the wavelet decomposition we study the characteristics of the proposed method. LDA(Linear Discriminant Analysis) QDA(Quadratic Discriminant Analysis) RDA(Regularized Discriminant Analysis) and NN(Neural network) are used for the calculation of recognition rates. 6000 hand-written numerals from CENPARMI at Concordia University are used for the experiment. We found that the set of significantly selected wavelet decomposed features generates higher recognition rate than the original image features.

  • PDF

Development of Exit Burr Identification Algorithm on Multiple Feature Workpiece and Multiple Tool Path (복합형상 및 다중경로에 대한 Exit Burr 판별 알고리듬의 개발- 스플라인을 포함한 Exit Burr의 해석 -)

  • Kim, Ji-Hwan;Lee, Jang-Beom;Kim, Young-Jin
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.247-252
    • /
    • 2005
  • In the automated production environment in the present days, the minimization of manual operation becomes a very important factor in increasing the efficiency of the production system. The exit burr produced through the milling operation on the edge of workpiece usually requires manual deburring process to enhance the level of precision of the resulting product. So far, researchers have developed various methods to understand the formation of exit burr in cutting process. One method to analytically identify the formation of exit burr was to use the geometrical information of CAD and CAM data used in automated machining. This method, in turn, generated the information resulting from the analysis such as burr type, cutting region, and exit angle. Up to now, the geometrical data were restricted to the single feature and single path. In this paper, a method to deal with the complicated geometric features such as line segment, arc, hole, and spline will be presented and validated using the field data. This method also deals with the complex workpiece shape which is a combination of multiple features. As for the cutting path, multiple tool path is analyzed in order to simulate the real cutting process. All this analysis is combined into a Windows based software and real data are used to validate the program in the conclusion.

An intelligent health monitoring method for processing data collected from the sensor network of structure

  • Ghiasi, Ramin;Ghasemi, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.703-716
    • /
    • 2018
  • Rapid detection of damages in civil engineering structures, in order to assess their possible disorders and as a result produce competent decision making, are crucial to ensure their health and ultimately enhance the level of public safety. In traditional intelligent health monitoring methods, the features are manually extracted depending on prior knowledge and diagnostic expertise. Inspired by the idea of unsupervised feature learning that uses artificial intelligence techniques to learn features from raw data, a two-stage learning method is proposed here for intelligent health monitoring of civil engineering structures. In the first stage, $Nystr{\ddot{o}}m$ method is used for automatic feature extraction from structural vibration signals. In the second stage, Moving Kernel Principal Component Analysis (MKPCA) is employed to classify the health conditions based on the extracted features. In this paper, KPCA has been implemented in a new form as Moving KPCA for effectively segmenting large data and for determining the changes, as data are continuously collected. Numerical results revealed that the proposed health monitoring system has a satisfactory performance for detecting the damage scenarios of a three-story frame aluminum structure. Furthermore, the enhanced version of KPCA methods exhibited a significant improvement in sensitivity, accuracy, and effectiveness over conventional methods.

Pretreatment For The Problem Solution Of Contents-Based Music Retrieval (내용 기반 음악 검색의 문제점 해결을 위한 전처리)

  • Chung, Myoung-Beom;Sung, Bo-Kyung;Ko, Il-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.97-104
    • /
    • 2007
  • This paper presents the problem of the feature extraction techniques that has been used a content-based analysis, classification and retrieval in audio data and proposes a course of the preprocessing for a new contents-based retrieval methods. Because the feature vector according to sampling value changes, the existing audio data analysis is problem that same music is appraised by other music. Therefore, we propose waveform information extraction method of PCM data for retrieval audio data of various format to contents-based. If this method is used. we can find that audio datas that get into sampling in various format are same data. And it may be applied in contents-based music retrieval system. To verity the performance of the method, an experiment was done feature extraction using STFT and waveform information extraction using PCM data. As a result, we could know that the method to propose is effective more.

  • PDF

The effect of housing type on the perception of the quality of housing environement and housing satisfaction (주택유형이 주거환경의 질인지와 주거만족도에 미치는 영향)

  • 김미희
    • Journal of the Korean Home Economics Association
    • /
    • v.23 no.2
    • /
    • pp.55-66
    • /
    • 1985
  • This study is intended to compare the quality of housing envirionments between single family house and apartments. To be specific, firstly, it is to be examined as to whether there exists any differences between residents of single family house and those of highrise apartments in terms of their perception of the quality of housing environment. Secondly, the major factors of the perception of the quality of housing environment may be linked to the level of housing satisfaction are to be explored in this study. The perception of the quality housing environment is composed of four factors such as living space, noise, neighbor environment, and structural feature. For the purpose, questionnaires were adinistered to 125 home makers living in single family house and 125 home makers in high-rise apartments in Kwangju. The data were analyzed with factor analysis, analysis of variance, and multiple regression analysis.The following conclusions are derived from the data analysis in thi study: 1) Resjdents of apartments tended to be more satisfied with structural feature of housing unit and less satisfied with noise than those of single family house. There are negligible differences between two housing types in perception of the quality of living space, and neighbor environment. 2) According to the singhle family house group, it is found that structural feature, neighbor environment, and living space predict most of the variance in the level of housing unit satisfaction. It is also turned out that neighbor environment, noise, and structural feature have impact on the level of neighborhood statisfaction. 3) the apartments group shows that structural feature is the only predictor having impact on housing unit satisfaction. It is found that neighbor environment factor predicted the level of neighborhood satisfaction.

  • PDF

Prediction of Dissolved Oxygen at Anyang-stream using XG-Boost and Artificial Neural Networks

  • Keun Young Lee;Bomchul Kim;Gwanghyun Jo
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.133-138
    • /
    • 2024
  • Dissolved oxygen (DO) is an important factor in ecosystems. However, the analysis of DO is frequently rather complicated because of the nonlinear phenomenon of the river system. Therefore, a convenient model-free algorithm for DO variable is required. In this study, a data-driven algorithm for predicting DO was developed by combining XGBoost and an artificial neural network (ANN), called ANN-XGB. To train the model, two years of ecosystem data were collected in Anyang, Seoul using the Troll 9500 model. One advantage of the proposed algorithm is its ability to capture abrupt changes in climate-related features that arise from sudden events. Moreover, our algorithm can provide a feature importance analysis owing to the use of XGBoost. The results obtained using the ANN-XGB algorithm were compared with those obtained using the ANN algorithm in the Results Section. The predictions made by ANN-XGB were mostly in closer agreement with the measured DO values in the river than those made by the ANN.