• Title/Summary/Keyword: Data and Analysis

Search Result 85,372, Processing Time 0.071 seconds

Neo-Chinese Style Furniture Design Based on Semantic Analysis and Connection

  • Ye, Jialei;Zhang, Jiahao;Gao, Liqian;Zhou, Yang;Liu, Ziyang;Han, Jianguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2704-2719
    • /
    • 2022
  • Lately, neo-Chinese style furniture has been frequently noticed by product design professionals for the big part it played in promoting traditional Chinese culture. This article is an attempt to use big data semantic analysis method to provide effective design research method for neo-Chinese furniture design. By using big data mining program TEXTOM for big data collection and analysis, the data obtained from typical websites in a set time period will be sorted and analyzed. On the basis of "neo-Chinese furniture" samples, key data will be compared, classification analysis of overall data, and horizontal analysis of typical data will be performed by the methods of word frequency analysis, connection centrality analysis, and TF-IDF analysis. And we tried to summarize according to the related views and theories of the design. The research results show that the results of data analysis are close to the relevant definitions of design. The core high-frequency vocabulary obtained under data analysis, such as popular, furniture, modern, etc., can provide a reasonable and effective focus of attention for the designs. The result obtained through the systematic sorting and summary of the data can be a reliable guidance in the direction of our design. This research attempted to introduce related big data mining semantic analysis methods into the product design industry, to supply scientific and objective data and channels for studies on design, and to provide a case on the practical application of big data analysis in the industry.

A Novel Data Prediction Model using Data Weights and Neural Network based on R for Meaning Analysis between Data (데이터간 의미 분석을 위한 R기반의 데이터 가중치 및 신경망기반의 데이터 예측 모형에 관한 연구)

  • Jung, Se Hoon;Kim, Jong Chan;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.524-532
    • /
    • 2015
  • All data created in BigData times is included potentially meaning and correlation in data. A variety of data during a day in all society sectors has become created and stored. Research areas in analysis and grasp meaning between data is proceeding briskly. Especially, accuracy of meaning prediction and data imbalance problem between data for analysis is part in course of something important in data analysis field. In this paper, we proposed data prediction model based on data weights and neural network using R for meaning analysis between data. Proposed data prediction model is composed of classification model and analysis model. Classification model is working as weights application of normal distribution and optimum independent variable selection of multiple regression analysis. Analysis model role is increased prediction accuracy of output variable through neural network. Performance evaluation result, we were confirmed superiority of prediction model so that performance of result prediction through primitive data was measured 87.475% by proposed data prediction model.

A Case Study on Big Data Analysis Systems for Policy Proposals of Engineering Education (공학교육 정책제안을 위한 빅데이터 분석 시스템 사례 분석 연구)

  • Kim, JaeHee;Yoo, Mina
    • Journal of Engineering Education Research
    • /
    • v.22 no.5
    • /
    • pp.37-48
    • /
    • 2019
  • The government has tried to develop a platform for systematically collecting and managing engineering education data for policy proposals. However, there have been few cases of big data analysis platform for policy proposals in engineering education, and it is difficult to determine the major function of the platform, the purpose of using big data, and the method of data collection. This study aims to collect the cases of big data analysis systems for the development of a big data system for educational policy proposals, and to conduct a study to analyze cases using the analysis frame of key elements to consider in developing a big data analysis platform. In order to analyze the case of big data system for engineering education policy proposals, 24 systems collecting and managing big data were selected. The analysis framework was developed based on literature reviews and the results of the case analysis were presented. The results of this study are expected to provide from macro-level such as what functions the platform should perform in developing a big data system and how to collect data, what analysis techniques should be adopted, and how to visualize the data analysis results.

Development of Realtime GRID Analysis Method based on the High Precision Streaming Data

  • Lee, HyeonSoo;Suh, YongCheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.569-578
    • /
    • 2016
  • With the recent advancement of surveying and technology, the spatial data acquisition rates and precision have been improved continually. As the updates of spatial data are rapid, and the size of data increases in line with the advancing technology, the LOD (Level of Detail) algorithm has been adopted to process data expressions in real time in a streaming format with spatial data divided precisely into separate steps. The existing GRID analysis utilizes the single DEM, as it is, in examining and analyzing all data outside the analysis area as well, which results in extending the analysis time in proportion to the quantity of data. Hence, this study suggests a method to reduce analysis time and data throughput by acquiring and analyzing DEM data necessary for GRID analysis in real time based on the area of analysis and the level of precision, specifically for streaming DEM data, which is utilized mostly for 3D geographic information service.

Big Data Smoothing and Outlier Removal for Patent Big Data Analysis

  • Choi, JunHyeog;Jun, Sunghae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.8
    • /
    • pp.77-84
    • /
    • 2016
  • In general statistical analysis, we need to make a normal assumption. If this assumption is not satisfied, we cannot expect a good result of statistical data analysis. Most of statistical methods processing the outlier and noise also need to the assumption. But the assumption is not satisfied in big data because of its large volume and heterogeneity. So we propose a methodology based on box-plot and data smoothing for controling outlier and noise in big data analysis. The proposed methodology is not dependent upon the normal assumption. In addition, we select patent documents as target domain of big data because patent big data analysis is a important issue in management of technology. We analyze patent documents using big data learning methods for technology analysis. The collected patent data from patent databases on the world are preprocessed and analyzed by text mining and statistics. But the most researches about patent big data analysis did not consider the outlier and noise problem. This problem decreases the accuracy of prediction and increases the variance of parameter estimation. In this paper, we check the existence of the outlier and noise in patent big data. To know whether the outlier is or not in the patent big data, we use box-plot and smoothing visualization. We use the patent documents related to three dimensional printing technology to illustrate how the proposed methodology can be used for finding the existence of noise in the searched patent big data.

Big Data Patent Analysis Using Social Network Analysis (키워드 네트워크 분석을 이용한 빅데이터 특허 분석)

  • Choi, Ju-Choel
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.2
    • /
    • pp.251-257
    • /
    • 2018
  • As the use of big data is necessary for increasing business value, the size of the big data market is getting bigger. Accordingly, it is important to apply competitive patents in order to gain the big data market. In this study, we conducted the patent analysis based keyword network to analyze the trend of big data patents. The analysis procedure consists of big data collection and preprocessing, network construction, and network analysis. The results of the study are as follows. Most of big data patents are related to data processing and analysis, and the keywords with high degree centrality and between centrality are "analysis", "process", "information", "data", "prediction", "server", "service", and "construction". we expect that the results of this study will offer useful information in applying big data patent.

Development of an Analysis Software for the Load Measurement of Wind Turbines (풍력발전기의 하중 측정을 위한 해석 소프트웨어의 개발)

  • Gil, Kyehwan;Bang, Je-Sung;Chung, Chinwha
    • Journal of Wind Energy
    • /
    • v.4 no.1
    • /
    • pp.20-29
    • /
    • 2013
  • Load measurement, which is performed based on IEC 61400-13, consists of three stages: the stage of collecting huge amounts of load measurement data through a measurement campaign lasting for several months; the stage of processing the measured data, including data validation and classification; and the stage of analyzing the processed data through time series analysis, load statistics analysis, frequency analysis, load spectrum analysis, and equivalent load analysis. In this research, we pursued the development of an analysis software in MATLAB to save labor and to secure exact and consistent performance evaluation data in processing and analyzing load measurement data. The completed analysis software also includes the functions of processing and analyzing power performance measurement data in accordance with IEC 61400-12. The analysis software was effectively applied to process and analyse the load measurement data from a demonstration research for a 750 kW direct-drive wind turbine generator system (KBP-750D), performed at the Daegwanryeong Wind Turbine Demonstration Complex. This paper describes the details of the analysis software and its processing and analysis stages for load measurement data and presents the analysis results.

A Study on Patent Data Analysis and Competitive Advantage Strategy using TF-IDF and Network Analysis (TF-IDF와 네트워크분석을 이용한 특허 데이터 분석과 경쟁우위 전략수립에 관한 연구)

  • Yun, Seok-Yong;Han, Kyeong-Seok
    • Journal of Digital Contents Society
    • /
    • v.19 no.3
    • /
    • pp.529-535
    • /
    • 2018
  • Data is explosively growing, but many companies are still using data analysis only for descriptive analysis or diagnostic analysis, and not appropriately for predictive analysis or enterprise technology strategy analysis. In this study, we analyze the structured & unstructured patent data such as IPC code, inventor, filing date and so on by using big data analysis techniques such as network analysis and TF-IDF. Through this analysis, we propose analysis process to understand the core technology and technology distribution of competitors and prove it through data analysis.

Network-based Microarray Data Analysis Tool

  • Park, Hee-Chang;Ryu, Ki-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.53-62
    • /
    • 2006
  • DNA microarray data analysis is a new technology to investigate the expression levels of thousands of genes simultaneously. Since DNA microarray data structures are various and complicative, the data are generally stored in databases for approaching to and controlling the data effectively. But we have some difficulties to analyze and control the data when the data are stored in the several database management systems or that the data are stored to the file format. The existing analysis tools for DNA microarray data have many difficult problems by complicated instructions, and dependency on data types and operating system. In this paper, we design and implement network-based analysis tool for obtaining to useful information from DNA microarray data. When we use this tool, we can analyze effectively DNA microarray data without special knowledge and education for data types and analytical methods.

  • PDF

Patterns of Data Analysis\ulcorner

  • Unwin, Antony
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.2
    • /
    • pp.219-230
    • /
    • 2001
  • How do you carry out data analysis\ulcorner There are few texts and little theory. One approach could be to use a pattern language, an idea which has been successful in field as diverse as town planning and software engineering. Patterns for data analysis are defined and discussed, illustrated with examples.

  • PDF