• Title/Summary/Keyword: Data Search Algorithm

Search Result 883, Processing Time 0.03 seconds

Design of Efficient Data Search Function using the Excel VBA DAO (엑셀 VBA DAO 기능을 이용한 효율적인 데이타 검색 기능 설계)

  • Jang, Seung Ju;Ryu, Dae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.217-222
    • /
    • 2014
  • In this paper, I propose an efficient data search system using data partitioning algorithm in Microsoft Excel. I propose searching algorithm to retrieve data quickly using VBA functioning in the Excel. This algorithm is to specify the sheet you are looking for. Once the sheet is specified, the algorithm searches the beginning and the end of the data in the sheet. The algorithm compares intermediate values and key words, from the starting position of the cell. In this way, it will search data to the end. This proposed algorithm was implemented and tested in the Excel system using VBA program. The experimental results showed that the performance was better than that of the conventional sequential search method.

A k-means++ Algorithm for Internet Shopping Search Engine

  • Jian-Ji Ren;Jae-kee Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.75-77
    • /
    • 2008
  • Nowadays, as the indices of the major search engines grow to a tremendous proportion, vertical search services can help customers to find what they need. Search Engine is one of the reasons for Internet shopping success in today's world. The import one part of search engine is clustering data. The objective of this paper is to explore a k-means++ algorithm to calculate the clustering data which in the Internet shopping environment. The experiment results shows that the k-means++ algorithm is a faster algorithm to achieved a good clustering.

ACA: Automatic search strategy for radioactive source

  • Jianwen Huo;Xulin Hu;Junling Wang;Li Hu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3030-3038
    • /
    • 2023
  • Nowadays, mobile robots have been used to search for uncontrolled radioactive source in indoor environments to avoid radiation exposure for technicians. However, in the indoor environments, especially in the presence of obstacles, how to make the robots with limited sensing capabilities automatically search for the radioactive source remains a major challenge. Also, the source search efficiency of robots needs to be further improved to meet practical scenarios such as limited exploration time. This paper proposes an automatic source search strategy, abbreviated as ACA: the location of source is estimated by a convolutional neural network (CNN), and the path is planned by the A-star algorithm. First, the search area is represented as an occupancy grid map. Then, the radiation dose distribution of the radioactive source in the occupancy grid map is obtained by Monte Carlo (MC) method simulation, and multiple sets of radiation data are collected through the eight neighborhood self-avoiding random walk (ENSAW) algorithm as the radiation data set. Further, the radiation data set is fed into the designed CNN architecture to train the network model in advance. When the searcher enters the search area where the radioactive source exists, the location of source is estimated by the network model and the search path is planned by the A-star algorithm, and this process is iterated continuously until the searcher reaches the location of radioactive source. The experimental results show that the average number of radiometric measurements and the average number of moving steps of the ACA algorithm are only 2.1% and 33.2% of those of the gradient search (GS) algorithm in the indoor environment without obstacles. In the indoor environment shielded by concrete walls, the GS algorithm fails to search for the source, while the ACA algorithm successfully searches for the source with fewer moving steps and sparse radiometric data.

Subset selection in multiple linear regression: An improved Tabu search

  • Bae, Jaegug;Kim, Jung-Tae;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.138-145
    • /
    • 2016
  • This paper proposes an improved tabu search method for subset selection in multiple linear regression models. Variable selection is a vital combinatorial optimization problem in multivariate statistics. The selection of the optimal subset of variables is necessary in order to reliably construct a multiple linear regression model. Its applications widely range from machine learning, timeseries prediction, and multi-class classification to noise detection. Since this problem has NP-complete nature, it becomes more difficult to find the optimal solution as the number of variables increases. Two typical metaheuristic methods have been developed to tackle the problem: the tabu search algorithm and hybrid genetic and simulated annealing algorithm. However, these two methods have shortcomings. The tabu search method requires a large amount of computing time, and the hybrid algorithm produces a less accurate solution. To overcome the shortcomings of these methods, we propose an improved tabu search algorithm to reduce moves of the neighborhood and to adopt an effective move search strategy. To evaluate the performance of the proposed method, comparative studies are performed on small literature data sets and on large simulation data sets. Computational results show that the proposed method outperforms two metaheuristic methods in terms of the computing time and solution quality.

Comparison of Estimating Parameters by Univariate Search and Genetic Algorithm using Tank Model (단일변이 탐색법과 유전 알고리즘에 의한 탱크모형 매개변수 결정 비교 연구)

  • Lee, Sung-Yong;Kim, Tae-Gon;Lee, Je-Myung;Lee, Eun-Jung;Kang, Moon-Seong;Park, Seung-Woo;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • The objectives of this study are to apply univariate search and genetic algorithm to tank model, and compare the two optimization methods. Hydrologic data of Baran watershed during 1996 and 1997 were used for correction the tank model, and the data of 1999 to 2000 were used for validation. RMSE and R2 were used for the tank model's optimization. Genetic algorithm showed better result than univariate search. Genetic algorithm converges to general optima, and more population of potential solution made better result. Univariate search was easy to apply and simple but had a problem of convergence to local optima, and the problem was not solved although search the solution more minutely. Therefore, this study recommend genetic algorithm to optimize tank model rather than univariate search.

An Approximate k-Nearest Neighbor Search Algorithm for Content- Based Multimedia Information Retrieval (내용 기반 멀티미디어 정보 검색을 위한 근사 k-최근접 데이타 탐색 알고리즘)

  • Song, Kwang-Taek;Chang, Jae-Woo
    • Journal of KIISE:Databases
    • /
    • v.27 no.2
    • /
    • pp.199-208
    • /
    • 2000
  • The k-nearest neighbor search query based on similarity is very important for content-based multimedia information retrieval(MIR). The conventional exact k-nearest neighbor search algorithm is not efficient for the MIR application because multimedia data should be represented as high dimensional feature vectors. Thus, an approximate k-nearest neighbor search algorithm is required for the MIR applications because the performance increase may outweigh the drawback of receiving approximate results. For this, we propose a new approximate k-nearest neighbor search algorithm for high dimensional data. In addition, the comparison of the conventional algorithm with our approximate k-nearest neighbor search algorithm is performed in terms of retrieval performance. Results show that our algorithm is more efficient than the conventional ones.

  • PDF

Distributed Database Design using Evolutionary Algorithms

  • Tosun, Umut
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.430-435
    • /
    • 2014
  • The performance of a distributed database system depends particularly on the site-allocation of the fragments. Queries access different fragments among the sites, and an originating site exists for each query. A data allocation algorithm should distribute the fragments to minimize the transfer and settlement costs of executing the query plans. The primary cost for a data allocation algorithm is the cost of the data transmission across the network. The data allocation problem in a distributed database is NP-complete, and scalable evolutionary algorithms were developed to minimize the execution costs of the query plans. In this paper, quadratic assignment problem heuristics were designed and implemented for the data allocation problem. The proposed algorithms find near-optimal solutions for the data allocation problem. In addition to the fast ant colony, robust tabu search, and genetic algorithm solutions to this problem, we propose a fast and scalable hybrid genetic multi-start tabu search algorithm that outperforms the other well-known heuristics in terms of execution time and solution quality.

A Stigmergy-and-Neighborhood Based Ant Algorithm for Clustering Data

  • Lee, Hee-Sang;Shim, Gyu-Seok
    • Management Science and Financial Engineering
    • /
    • v.15 no.1
    • /
    • pp.81-96
    • /
    • 2009
  • Data mining, specially clustering is one of exciting research areas for ant based algorithms. Ant clustering algorithm, however, has many difficulties for resolving practical situations in clustering. We propose a new grid-based ant colony algorithm for clustering of data. The previous ant based clustering algorithms usually tried to find the clusters during picking up or dropping down process of the items of ants using some stigmergy information. In our ant clustering algorithm we try to make the ants reflect neighborhood information within the storage nests. We use two ant classes, search ants and labor ants. In the initial step of the proposed algorithm, the search ants try to guide the characteristics of the storage nests. Then the labor ants try to classify the items using the guide in-formation that has set by the search ants and the stigmergy information that has set by other labor ants. In this procedure the clustering decision of ants is quickly guided and keeping out of from the stagnated process. We experimented and compared our algorithm with other known algorithms for the known and statistically-made data. From these experiments we prove that the suggested ant mining algorithm found the clusters quickly and effectively comparing with a known ant clustering algorithm.

The Signal Acquisition Algorithm for Ultra Wide-band Communication Systems (UWB 통신시스템에서 동기 획득 알고리즘)

  • Park, Dae-Heon;Kang, Beom-Jin;Park, Jang-Woo;Cho, Sung-Eon
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.2
    • /
    • pp.146-153
    • /
    • 2008
  • Due to the extremely short pulse in the Ultra-Wideband (UWB) technology, the accurate synchronization acquisition method is very important for both high data-rate WPAN and low data-rate WPAN. In this paper, we propose the synchronization acquisition algorithm based on two-step signal search method to acquire the synchronization in the UWB multi-path channel. At the first step, the search window is divided by two and the window that has higher power is chosen as a next search window. This operation is repeated until the measure power of the search window is smaller than the threshold value. At the second step, we employ Linear Search algorithm to the search window obtained at the first step for fine search. The proposed algorithm is proved that the synchronization acquisition is faster than the parallel search algorithm and it shows good performance in environment of the SNR extreme changes by the simulation.

  • PDF

A New Image Clustering Method Based on the Fuzzy Harmony Search Algorithm and Fourier Transform

  • Bekkouche, Ibtissem;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.555-576
    • /
    • 2016
  • In the conventional clustering algorithms, an object could be assigned to only one group. However, this is sometimes not the case in reality, there are cases where the data do not belong to one group. As against, the fuzzy clustering takes into consideration the degree of fuzzy membership of each pixel relative to different classes. In order to overcome some shortcoming with traditional clustering methods, such as slow convergence and their sensitivity to initialization values, we have used the Harmony Search algorithm. It is based on the population metaheuristic algorithm, imitating the musical improvisation process. The major thrust of this algorithm lies in its ability to integrate the key components of population-based methods and local search-based methods in a simple optimization model. We propose in this paper a new unsupervised clustering method called the Fuzzy Harmony Search-Fourier Transform (FHS-FT). It is based on hybridization fuzzy clustering and the harmony search algorithm to increase its exploitation process and to further improve the generated solution, while the Fourier transform to increase the size of the image's data. The results show that the proposed method is able to provide viable solutions as compared to previous work.